如何将任意长度的列表拆分为大小相等的块?
请参阅如果数据结果将直接用于循环,并且不需要存储,则如何以块形式遍历列表。
对于字符串输入的同一问题,请参见每n个字符拆分字符串?。相同的技术通常适用,但也有一些变化。
如何将任意长度的列表拆分为大小相等的块?
请参阅如果数据结果将直接用于循环,并且不需要存储,则如何以块形式遍历列表。
对于字符串输入的同一问题,请参见每n个字符拆分字符串?。相同的技术通常适用,但也有一些变化。
这是一个生成大小均匀的块的生成器:
def chunks(lst, n):
"""Yield successive n-sized chunks from lst."""
for i in range(0, len(lst), n):
yield lst[i:i + n]
import pprint
pprint.pprint(list(chunks(range(10, 75), 10)))
[[10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
[20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
[30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
[40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
[50, 51, 52, 53, 54, 55, 56, 57, 58, 59],
[60, 61, 62, 63, 64, 65, 66, 67, 68, 69],
[70, 71, 72, 73, 74]]
对于Python 2,使用xrange代替range:
def chunks(lst, n):
"""Yield successive n-sized chunks from lst."""
for i in xrange(0, len(lst), n):
yield lst[i:i + n]
下面是一行理解列表。不过,上面的方法更可取,因为使用命名函数使代码更容易理解。对于Python 3:
[lst[i:i + n] for i in range(0, len(lst), n)]
对于Python 2:
[lst[i:i + n] for i in xrange(0, len(lst), n)]
如果您知道列表大小:
def SplitList(mylist, chunk_size):
return [mylist[offs:offs+chunk_size] for offs in range(0, len(mylist), chunk_size)]
如果没有(迭代器):
def IterChunks(sequence, chunk_size):
res = []
for item in sequence:
res.append(item)
if len(res) >= chunk_size:
yield res
res = []
if res:
yield res # yield the last, incomplete, portion
在后一种情况下,如果您可以确保序列始终包含给定大小的整数个块(即没有不完整的最后一个块),则可以用更漂亮的方式重新表述。
下面是一个处理任意可迭代项的生成器:
def split_seq(iterable, size):
it = iter(iterable)
item = list(itertools.islice(it, size))
while item:
yield item
item = list(itertools.islice(it, size))
例子:
>>> import pprint
>>> pprint.pprint(list(split_seq(xrange(75), 10)))
[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
[20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
[30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
[40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
[50, 51, 52, 53, 54, 55, 56, 57, 58, 59],
[60, 61, 62, 63, 64, 65, 66, 67, 68, 69],
[70, 71, 72, 73, 74]]
呵呵,单行版本
In [48]: chunk = lambda ulist, step: map(lambda i: ulist[i:i+step], xrange(0, len(ulist), step))
In [49]: chunk(range(1,100), 10)
Out[49]:
[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
[11, 12, 13, 14, 15, 16, 17, 18, 19, 20],
[21, 22, 23, 24, 25, 26, 27, 28, 29, 30],
[31, 32, 33, 34, 35, 36, 37, 38, 39, 40],
[41, 42, 43, 44, 45, 46, 47, 48, 49, 50],
[51, 52, 53, 54, 55, 56, 57, 58, 59, 60],
[61, 62, 63, 64, 65, 66, 67, 68, 69, 70],
[71, 72, 73, 74, 75, 76, 77, 78, 79, 80],
[81, 82, 83, 84, 85, 86, 87, 88, 89, 90],
[91, 92, 93, 94, 95, 96, 97, 98, 99]]
直接从(旧的)Python文档(itertools的配方):
from itertools import izip, chain, repeat
def grouper(n, iterable, padvalue=None):
"grouper(3, 'abcdefg', 'x') --> ('a','b','c'), ('d','e','f'), ('g','x','x')"
return izip(*[chain(iterable, repeat(padvalue, n-1))]*n)
J.F.Sebastian建议的当前版本:
#from itertools import izip_longest as zip_longest # for Python 2.x
from itertools import zip_longest # for Python 3.x
#from six.moves import zip_longest # for both (uses the six compat library)
def grouper(n, iterable, padvalue=None):
"grouper(3, 'abcdefg', 'x') --> ('a','b','c'), ('d','e','f'), ('g','x','x')"
return zip_longest(*[iter(iterable)]*n, fillvalue=padvalue)
我猜圭多的时间机器工作了,会工作的。
这些解决方案之所以有效,是因为[iter(iterable)]*n(或早期版本中的等价物)创建了一个迭代器,在列表中重复n次。izip_length然后有效地执行“每个”迭代器的循环;因为这是同一个迭代器,所以每一个这样的调用都会使它前进,从而导致每个这样的zip循环生成一个由n个项组成的元组。
def split_seq(seq, num_pieces):
start = 0
for i in xrange(num_pieces):
stop = start + len(seq[i::num_pieces])
yield seq[start:stop]
start = stop
用法:
seq = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
for seq in split_seq(seq, 3):
print seq
def chunk(lst):
out = []
for x in xrange(2, len(lst) + 1):
if not len(lst) % x:
factor = len(lst) / x
break
while lst:
out.append([lst.pop(0) for x in xrange(factor)])
return out
>>> def f(x, n, acc=[]): return f(x[n:], n, acc+[(x[:n])]) if x else acc
>>> f("Hallo Welt", 3)
['Hal', 'lo ', 'Wel', 't']
>>>
如果你在括号里-我拿起了一本关于Erlang的书:)
非常简单的事情:
def chunks(xs, n):
n = max(1, n)
return (xs[i:i+n] for i in range(0, len(xs), n))
对于Python 2,使用xrange()代替range()。
不调用len(),这对大型列表很有用:
def splitter(l, n):
i = 0
chunk = l[:n]
while chunk:
yield chunk
i += n
chunk = l[i:i+n]
这是可迭代的:
def isplitter(l, n):
l = iter(l)
chunk = list(islice(l, n))
while chunk:
yield chunk
chunk = list(islice(l, n))
上述产品的功能风味:
def isplitter2(l, n):
return takewhile(bool,
(tuple(islice(start, n))
for start in repeat(iter(l))))
OR:
def chunks_gen_sentinel(n, seq):
continuous_slices = imap(islice, repeat(iter(seq)), repeat(0), repeat(n))
return iter(imap(tuple, continuous_slices).next,())
OR:
def chunks_gen_filter(n, seq):
continuous_slices = imap(islice, repeat(iter(seq)), repeat(0), repeat(n))
return takewhile(bool,imap(tuple, continuous_slices))
简单而优雅
L = range(1, 1000)
print [L[x:x+10] for x in xrange(0, len(L), 10)]
或者如果您愿意:
def chunks(L, n): return [L[x: x+n] for x in xrange(0, len(L), n)]
chunks(L, 10)
例如,如果块大小为3,则可以执行以下操作:
zip(*[iterable[i::3] for i in range(3)])
来源:http://code.activestate.com/recipes/303060-group-a-list-into-sequential-n-tuples/
当我的区块大小是固定的数字时,我会使用这个,我可以键入,例如“3”,并且永远不会改变。
考虑使用matplotlib.cbook片段
例如:
import matplotlib.cbook as cbook
segments = cbook.pieces(np.arange(20), 3)
for s in segments:
print s
def chunks(iterable,n):
"""assumes n is an integer>0
"""
iterable=iter(iterable)
while True:
result=[]
for i in range(n):
try:
a=next(iterable)
except StopIteration:
break
else:
result.append(a)
if result:
yield result
else:
break
g1=(i*i for i in range(10))
g2=chunks(g1,3)
print g2
'<generator object chunks at 0x0337B9B8>'
print list(g2)
'[[0, 1, 4], [9, 16, 25], [36, 49, 64], [81]]'
我意识到这个问题已经过时了(在谷歌上被它绊倒了),但肯定像下面这样的问题比任何复杂的建议都要简单和清晰得多,而且只使用切片:
def chunker(iterable, chunksize):
for i,c in enumerate(iterable[::chunksize]):
yield iterable[i*chunksize:(i+1)*chunksize]
>>> for chunk in chunker(range(0,100), 10):
... print list(chunk)
...
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
[20, 21, 22, 23, 24, 25, 26, 27, 28, 29]
... etc ...
参见本参考
>>> orange = range(1, 1001)
>>> otuples = list( zip(*[iter(orange)]*10))
>>> print(otuples)
[(1, 2, 3, 4, 5, 6, 7, 8, 9, 10), ... (991, 992, 993, 994, 995, 996, 997, 998, 999, 1000)]
>>> olist = [list(i) for i in otuples]
>>> print(olist)
[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10], ..., [991, 992, 993, 994, 995, 996, 997, 998, 999, 1000]]
>>>
蟒蛇3
我知道这有点过时,但还没有人提到numpy.array_split:
import numpy as np
lst = range(50)
np.array_split(lst, 5)
结果:
[array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
array([10, 11, 12, 13, 14, 15, 16, 17, 18, 19]),
array([20, 21, 22, 23, 24, 25, 26, 27, 28, 29]),
array([30, 31, 32, 33, 34, 35, 36, 37, 38, 39]),
array([40, 41, 42, 43, 44, 45, 46, 47, 48, 49])]
与任何可迭代的内部数据是生成器对象(不是列表)一个衬垫
In [259]: get_in_chunks = lambda itr,n: ( (v for _,v in g) for _,g in itertools.groupby(enumerate(itr),lambda (ind,_): ind/n)) In [260]: list(list(x) for x in get_in_chunks(range(30),7)) Out[260]: [[0, 1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12, 13], [14, 15, 16, 17, 18, 19, 20], [21, 22, 23, 24, 25, 26, 27], [28, 29]]
我非常喜欢tzot和J.F.Sebastian提出的Python文档版本,但它有两个缺点:
它不是很明确我通常不希望在最后一个块中有填充值
我在代码中经常使用这个:
from itertools import islice
def chunks(n, iterable):
iterable = iter(iterable)
while True:
yield tuple(islice(iterable, n)) or iterable.next()
更新:一个懒块版本:
from itertools import chain, islice
def chunks(n, iterable):
iterable = iter(iterable)
while True:
yield chain([next(iterable)], islice(iterable, n-1))
toolz库具有如下分区函数:
from toolz.itertoolz.core import partition
list(partition(2, [1, 2, 3, 4]))
[(1, 2), (3, 4)]
如何将列表分割成大小均匀的块?
对我来说,“大小均匀的块”意味着它们都是相同的长度,或者除非有这种选择,长度上的差异最小。例如,21个项目的5个篮子可能具有以下结果:
>>> import statistics
>>> statistics.variance([5,5,5,5,1])
3.2
>>> statistics.variance([5,4,4,4,4])
0.19999999999999998
更倾向于后一种结果的一个实际原因是:如果你使用这些函数来分配工作,你已经内置了一个可能比其他人完成得好的前景,因此当其他人继续努力工作时,它会无所事事。
此处对其他答案的批评
当我最初写这个答案时,没有一个其他答案是大小均匀的块——它们都会在最后留下一个小块,所以它们没有很好地平衡,并且长度的差异超过了必要的范围。
例如,当前顶部答案以:
[60, 61, 62, 63, 64, 65, 66, 67, 68, 69],
[70, 71, 72, 73, 74]]
其他如列表(grouper(3,range(7))和块(range(7,3))都返回:[(0,1,2),(3,4,5),(6,None,None)]。“无”只是填充,在我看来相当不雅。他们并没有将可迭代项平均分块。
为什么我们不能更好地划分这些呢?
循环解决方案
一个使用itertools.cycle的高级平衡解决方案,这就是我今天可能采用的方法。设置如下:
from itertools import cycle
items = range(10, 75)
number_of_baskets = 10
现在我们需要我们的列表来填充元素:
baskets = [[] for _ in range(number_of_baskets)]
最后,我们将要分配的元素与一个篮子循环压缩在一起,直到元素用完,从语义上讲,这正是我们想要的:
for element, basket in zip(items, cycle(baskets)):
basket.append(element)
结果如下:
>>> from pprint import pprint
>>> pprint(baskets)
[[10, 20, 30, 40, 50, 60, 70],
[11, 21, 31, 41, 51, 61, 71],
[12, 22, 32, 42, 52, 62, 72],
[13, 23, 33, 43, 53, 63, 73],
[14, 24, 34, 44, 54, 64, 74],
[15, 25, 35, 45, 55, 65],
[16, 26, 36, 46, 56, 66],
[17, 27, 37, 47, 57, 67],
[18, 28, 38, 48, 58, 68],
[19, 29, 39, 49, 59, 69]]
为了使这个解决方案产品化,我们编写了一个函数,并提供了类型注释:
from itertools import cycle
from typing import List, Any
def cycle_baskets(items: List[Any], maxbaskets: int) -> List[List[Any]]:
baskets = [[] for _ in range(min(maxbaskets, len(items)))]
for item, basket in zip(items, cycle(baskets)):
basket.append(item)
return baskets
在上面,我们列出了物品清单,以及篮子的最大数量。我们创建一个空列表列表,在其中以循环方式追加每个元素。
片
另一个优雅的解决方案是使用切片,特别是不太常用的切片步骤参数。即。:
start = 0
stop = None
step = number_of_baskets
first_basket = items[start:stop:step]
这一点特别优雅,因为切片不关心数据的长度-结果,我们的第一个篮子,只要它需要的长度就可以了。我们只需要增加每个篮子的起点。
事实上,这可能是一行代码,但为了可读性和避免代码过长,我们将使用多行代码:
from typing import List, Any
def slice_baskets(items: List[Any], maxbaskets: int) -> List[List[Any]]:
n_baskets = min(maxbaskets, len(items))
return [items[i::n_baskets] for i in range(n_baskets)]
来自itertools模块的islice将提供一种懒惰的迭代方法,就像问题中最初要求的那样。
我不认为大多数用例会受益匪浅,因为原始数据已经在列表中完全具体化,但对于大型数据集,它可以节省近一半的内存使用。
from itertools import islice
from typing import List, Any, Generator
def yield_islice_baskets(items: List[Any], maxbaskets: int) -> Generator[List[Any], None, None]:
n_baskets = min(maxbaskets, len(items))
for i in range(n_baskets):
yield islice(items, i, None, n_baskets)
查看结果:
from pprint import pprint
items = list(range(10, 75))
pprint(cycle_baskets(items, 10))
pprint(slice_baskets(items, 10))
pprint([list(s) for s in yield_islice_baskets(items, 10)])
更新了以前的解决方案
这是另一个平衡的解决方案,改编自我过去在生产中使用的函数,它使用模运算符:
def baskets_from(items, maxbaskets=25):
baskets = [[] for _ in range(maxbaskets)]
for i, item in enumerate(items):
baskets[i % maxbaskets].append(item)
return filter(None, baskets)
我创建了一个生成器,如果您将其放入列表中,它也会执行同样的操作:
def iter_baskets_from(items, maxbaskets=3):
'''generates evenly balanced baskets from indexable iterable'''
item_count = len(items)
baskets = min(item_count, maxbaskets)
for x_i in range(baskets):
yield [items[y_i] for y_i in range(x_i, item_count, baskets)]
最后,由于我看到上述所有函数都以连续的顺序返回元素(正如给定的那样):
def iter_baskets_contiguous(items, maxbaskets=3, item_count=None):
'''
generates balanced baskets from iterable, contiguous contents
provide item_count if providing a iterator that doesn't support len()
'''
item_count = item_count or len(items)
baskets = min(item_count, maxbaskets)
items = iter(items)
floor = item_count // baskets
ceiling = floor + 1
stepdown = item_count % baskets
for x_i in range(baskets):
length = ceiling if x_i < stepdown else floor
yield [items.next() for _ in range(length)]
输出
要测试它们:
print(baskets_from(range(6), 8))
print(list(iter_baskets_from(range(6), 8)))
print(list(iter_baskets_contiguous(range(6), 8)))
print(baskets_from(range(22), 8))
print(list(iter_baskets_from(range(22), 8)))
print(list(iter_baskets_contiguous(range(22), 8)))
print(baskets_from('ABCDEFG', 3))
print(list(iter_baskets_from('ABCDEFG', 3)))
print(list(iter_baskets_contiguous('ABCDEFG', 3)))
print(baskets_from(range(26), 5))
print(list(iter_baskets_from(range(26), 5)))
print(list(iter_baskets_contiguous(range(26), 5)))
打印结果:
[[0], [1], [2], [3], [4], [5]]
[[0], [1], [2], [3], [4], [5]]
[[0], [1], [2], [3], [4], [5]]
[[0, 8, 16], [1, 9, 17], [2, 10, 18], [3, 11, 19], [4, 12, 20], [5, 13, 21], [6, 14], [7, 15]]
[[0, 8, 16], [1, 9, 17], [2, 10, 18], [3, 11, 19], [4, 12, 20], [5, 13, 21], [6, 14], [7, 15]]
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11], [12, 13, 14], [15, 16, 17], [18, 19], [20, 21]]
[['A', 'D', 'G'], ['B', 'E'], ['C', 'F']]
[['A', 'D', 'G'], ['B', 'E'], ['C', 'F']]
[['A', 'B', 'C'], ['D', 'E'], ['F', 'G']]
[[0, 5, 10, 15, 20, 25], [1, 6, 11, 16, 21], [2, 7, 12, 17, 22], [3, 8, 13, 18, 23], [4, 9, 14, 19, 24]]
[[0, 5, 10, 15, 20, 25], [1, 6, 11, 16, 21], [2, 7, 12, 17, 22], [3, 8, 13, 18, 23], [4, 9, 14, 19, 24]]
[[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15], [16, 17, 18, 19, 20], [21, 22, 23, 24, 25]]
注意,连续生成器以与其他两个相同的长度模式提供块,但这些项都是有序的,并且它们被均匀地划分,就像可以划分离散元素列表一样。
我很惊讶没有人想到使用iter的双参数形式:
from itertools import islice
def chunk(it, size):
it = iter(it)
return iter(lambda: tuple(islice(it, size)), ())
演示:
>>> list(chunk(range(14), 3))
[(0, 1, 2), (3, 4, 5), (6, 7, 8), (9, 10, 11), (12, 13)]
这适用于任何可迭代的对象,并延迟生成输出。它返回元组而不是迭代器,但我认为它还是有一定的优雅。它也不会垫;如果您需要填充,上面的一个简单变体就足够了:
from itertools import islice, chain, repeat
def chunk_pad(it, size, padval=None):
it = chain(iter(it), repeat(padval))
return iter(lambda: tuple(islice(it, size)), (padval,) * size)
演示:
>>> list(chunk_pad(range(14), 3))
[(0, 1, 2), (3, 4, 5), (6, 7, 8), (9, 10, 11), (12, 13, None)]
>>> list(chunk_pad(range(14), 3, 'a'))
[(0, 1, 2), (3, 4, 5), (6, 7, 8), (9, 10, 11), (12, 13, 'a')]
与基于izip_longest的解决方案一样,上面的解决方案也始终适用。据我所知,对于可选pad的函数,没有单行或双线itertools配方。通过结合以上两种方法,这一方法非常接近:
_no_padding = object()
def chunk(it, size, padval=_no_padding):
if padval == _no_padding:
it = iter(it)
sentinel = ()
else:
it = chain(iter(it), repeat(padval))
sentinel = (padval,) * size
return iter(lambda: tuple(islice(it, size)), sentinel)
演示:
>>> list(chunk(range(14), 3))
[(0, 1, 2), (3, 4, 5), (6, 7, 8), (9, 10, 11), (12, 13)]
>>> list(chunk(range(14), 3, None))
[(0, 1, 2), (3, 4, 5), (6, 7, 8), (9, 10, 11), (12, 13, None)]
>>> list(chunk(range(14), 3, 'a'))
[(0, 1, 2), (3, 4, 5), (6, 7, 8), (9, 10, 11), (12, 13, 'a')]
我相信这是提议的提供可选填充的最短的分块器。
正如Tomasz Gandor所观察到的,如果两个填充块遇到一长串填充值,它们会意外停止。以下是以合理方式解决该问题的最后一个变体:
_no_padding = object()
def chunk(it, size, padval=_no_padding):
it = iter(it)
chunker = iter(lambda: tuple(islice(it, size)), ())
if padval == _no_padding:
yield from chunker
else:
for ch in chunker:
yield ch if len(ch) == size else ch + (padval,) * (size - len(ch))
演示:
>>> list(chunk([1, 2, (), (), 5], 2))
[(1, 2), ((), ()), (5,)]
>>> list(chunk([1, 2, None, None, 5], 2, None))
[(1, 2), (None, None), (5, None)]
我专门为此写了一个小图书馆,这里有。库的分块函数特别有效,因为它是作为生成器实现的,因此在某些情况下可以节省大量内存。它也不依赖切片表示法,因此可以使用任意迭代器。
import iterlib
print list(iterlib.chunked(xrange(1, 1000), 10))
# prints [(1, 2, 3, 4, 5, 6, 7, 8, 9, 10), (11, 12, 13, 14, 15, 16, 17, 18, 19, 20), ...]
就像@AaronHall我来这里找的是大小大致均匀的大块。对此有不同的解释。在我的例子中,如果期望的大小是N,我希望每个组的大小>=N。因此,在上述大多数情况下产生的孤儿应重新分配给其他群体。
这可以通过以下方式完成:
def nChunks(l, n):
""" Yield n successive chunks from l.
Works for lists, pandas dataframes, etc
"""
newn = int(1.0 * len(l) / n + 0.5)
for i in xrange(0, n-1):
yield l[i*newn:i*newn+newn]
yield l[n*newn-newn:]
(通过将列表拆分为N个长度大致相等的部分),只需将其称为nChunks(l,l/N)或nChunk(l,floor(l/N))
让r是块大小,L是初始列表,您可以这样做。
chunkL = [ [i for i in L[r*k:r*(k+1)] ] for k in range(len(L)/r)]
使用列表综合:
l = [1,2,3,4,5,6,7,8,9,10,11,12]
k = 5 #chunk size
print [tuple(l[x:y]) for (x, y) in [(x, x+k) for x in range(0, len(l), k)]]
另一个更明确的版本。
def chunkList(initialList, chunkSize):
"""
This function chunks a list into sub lists
that have a length equals to chunkSize.
Example:
lst = [3, 4, 9, 7, 1, 1, 2, 3]
print(chunkList(lst, 3))
returns
[[3, 4, 9], [7, 1, 1], [2, 3]]
"""
finalList = []
for i in range(0, len(initialList), chunkSize):
finalList.append(initialList[i:i+chunkSize])
return finalList
我在这个问题的副本中看到了最棒的Python式答案:
from itertools import zip_longest
a = range(1, 16)
i = iter(a)
r = list(zip_longest(i, i, i))
>>> print(r)
[(1, 2, 3), (4, 5, 6), (7, 8, 9), (10, 11, 12), (13, 14, 15)]
您可以为任何n创建n元组。如果a=范围(1,15),那么结果将是:
[(1, 2, 3), (4, 5, 6), (7, 8, 9), (10, 11, 12), (13, 14, None)]
如果列表被平均划分,那么可以用zip替换zip_langest,否则三元组(13、14、None)将丢失。上面使用了Python 3。对于Python 2,请使用izip_length。
上面的答案(由koffein给出)有一个小问题:列表总是被分割成相等数量的分割,而不是每个分区的项目数相等。这是我的版本。“//chs+1”考虑到项目的数量可能不能完全除以分区大小,因此最后一个分区将仅被部分填充。
# Given 'l' is your list
chs = 12 # Your chunksize
partitioned = [ l[i*chs:(i*chs)+chs] for i in range((len(l) // chs)+1) ]
代码:
def split_list(the_list, chunk_size):
result_list = []
while the_list:
result_list.append(the_list[:chunk_size])
the_list = the_list[chunk_size:]
return result_list
a_list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
print split_list(a_list, 3)
结果:
[[1, 2, 3], [4, 5, 6], [7, 8, 9], [10]]
a = [1, 2, 3, 4, 5, 6, 7, 8, 9]
CHUNK = 4
[a[i*CHUNK:(i+1)*CHUNK] for i in xrange((len(a) + CHUNK - 1) / CHUNK )]
我在不创建temorary列表对象的情况下提出了以下解决方案,该对象可以与任何可迭代对象一起使用。请注意,此版本适用于Python 2.x:
def chunked(iterable, size):
stop = []
it = iter(iterable)
def _next_chunk():
try:
for _ in xrange(size):
yield next(it)
except StopIteration:
stop.append(True)
return
while not stop:
yield _next_chunk()
for it in chunked(xrange(16), 4):
print list(it)
输出:
[0, 1, 2, 3]
[4, 5, 6, 7]
[8, 9, 10, 11]
[12, 13, 14, 15]
[]
正如您所看到的,如果len(可迭代)%size==0,那么我们有额外的空迭代器对象。但我不认为这是个大问题。
由于我必须这样做,下面是我的解决方案,给出了一个生成器和一个批量大小:
def pop_n_elems_from_generator(g, n):
elems = []
try:
for idx in xrange(0, n):
elems.append(g.next())
return elems
except StopIteration:
return elems
在这一点上,我认为我们需要一个递归生成器,以防万一。。。
在python 2中:
def chunks(li, n):
if li == []:
return
yield li[:n]
for e in chunks(li[n:], n):
yield e
在python 3中:
def chunks(li, n):
if li == []:
return
yield li[:n]
yield from chunks(li[n:], n)
此外,在大规模外星人入侵的情况下,装饰递归生成器可能会变得很方便:
def dec(gen):
def new_gen(li, n):
for e in gen(li, n):
if e == []:
return
yield e
return new_gen
@dec
def chunks(li, n):
yield li[:n]
for e in chunks(li[n:], n):
yield e
此时,我认为我们需要强制性的匿名递归函数。
Y = lambda f: (lambda x: x(x))(lambda y: f(lambda *args: y(y)(*args)))
chunks = Y(lambda f: lambda n: [n[0][:n[1]]] + f((n[0][n[1]:], n[1])) if len(n[0]) > 0 else [])
[AA[i:i+SS] for i in range(len(AA))[::SS]]
其中AA是数组,SS是块大小。例如:
>>> AA=range(10,21);SS=3
>>> [AA[i:i+SS] for i in range(len(AA))[::SS]]
[[10, 11, 12], [13, 14, 15], [16, 17, 18], [19, 20]]
# or [range(10, 13), range(13, 16), range(16, 19), range(19, 21)] in py3
要扩展py3中的范围,请执行以下操作
(py3) >>> [list(AA[i:i+SS]) for i in range(len(AA))[::SS]]
[[10, 11, 12], [13, 14, 15], [16, 17, 18], [19, 20]]
根据这个答案,得票最多的答案在最后留下一个“矮子”。这是我的解决方案,可以在没有矮子的情况下,尽可能地获得大小均匀的块。它基本上试图准确选择应该拆分列表的小数点,但只需将其舍入到最接近的整数:
from __future__ import division # not needed in Python 3
def n_even_chunks(l, n):
"""Yield n as even chunks as possible from l."""
last = 0
for i in range(1, n+1):
cur = int(round(i * (len(l) / n)))
yield l[last:cur]
last = cur
演示:
>>> pprint.pprint(list(n_even_chunks(list(range(100)), 9)))
[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
[11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21],
[22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32],
[33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43],
[44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55],
[56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66],
[67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77],
[78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88],
[89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99]]
>>> pprint.pprint(list(n_even_chunks(list(range(100)), 11)))
[[0, 1, 2, 3, 4, 5, 6, 7, 8],
[9, 10, 11, 12, 13, 14, 15, 16, 17],
[18, 19, 20, 21, 22, 23, 24, 25, 26],
[27, 28, 29, 30, 31, 32, 33, 34, 35],
[36, 37, 38, 39, 40, 41, 42, 43, 44],
[45, 46, 47, 48, 49, 50, 51, 52, 53, 54],
[55, 56, 57, 58, 59, 60, 61, 62, 63],
[64, 65, 66, 67, 68, 69, 70, 71, 72],
[73, 74, 75, 76, 77, 78, 79, 80, 81],
[82, 83, 84, 85, 86, 87, 88, 89, 90],
[91, 92, 93, 94, 95, 96, 97, 98, 99]]
与排名前几的答案进行比较:
>>> pprint.pprint(list(chunks(list(range(100)), 100//9)))
[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
[11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21],
[22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32],
[33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43],
[44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54],
[55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65],
[66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76],
[77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87],
[88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98],
[99]]
>>> pprint.pprint(list(chunks(list(range(100)), 100//11)))
[[0, 1, 2, 3, 4, 5, 6, 7, 8],
[9, 10, 11, 12, 13, 14, 15, 16, 17],
[18, 19, 20, 21, 22, 23, 24, 25, 26],
[27, 28, 29, 30, 31, 32, 33, 34, 35],
[36, 37, 38, 39, 40, 41, 42, 43, 44],
[45, 46, 47, 48, 49, 50, 51, 52, 53],
[54, 55, 56, 57, 58, 59, 60, 61, 62],
[63, 64, 65, 66, 67, 68, 69, 70, 71],
[72, 73, 74, 75, 76, 77, 78, 79, 80],
[81, 82, 83, 84, 85, 86, 87, 88, 89],
[90, 91, 92, 93, 94, 95, 96, 97, 98],
[99]]
因为这里的每个人都在谈论迭代器。boltons有一个完美的方法,叫做iterutils.chunked_iter。
from boltons import iterutils
list(iterutils.chunked_iter(list(range(50)), 11))
输出:
[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
[11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21],
[22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32],
[33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43],
[44, 45, 46, 47, 48, 49]]
但如果您不想在内存上手下留情,您可以使用旧方法,首先使用iterutils.chunked存储完整列表。
您可以使用numpy的array_split函数,例如np.array_split(np.array(data),20),将其拆分为20个大小几乎相等的块。
要确保块的大小完全相等,请使用np.split。
下面我有一个解决方案确实有效,但比这个解决方案更重要的是对其他方法的一些评论。首先,一个好的解决方案不应该要求一个循环按顺序遍历子迭代器。如果我跑
g = paged_iter(list(range(50)), 11))
i0 = next(g)
i1 = next(g)
list(i1)
list(i0)
最后一个命令的适当输出是
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
not
[]
正如这里大多数基于itertools的解决方案所返回的那样。这不仅仅是关于按顺序访问迭代器的常见无聊限制。想象一个消费者试图清理输入不良的数据,该数据颠倒了5的块的适当顺序,即数据看起来像[B5,A5,D5,C5],应该像[A5,B5,C5,D5](其中A5只是五个元素,而不是子列表)。该使用者将查看分组函数的声明行为,并毫不犹豫地编写一个类似
i = 0
out = []
for it in paged_iter(data,5)
if (i % 2 == 0):
swapped = it
else:
out += list(it)
out += list(swapped)
i = i + 1
如果您偷偷摸摸地假设子迭代器总是按顺序完全使用,那么这将产生神秘的错误结果。如果你想交错块中的元素,情况就更糟了。
其次,大量建议的解决方案隐含地依赖于迭代器具有确定性顺序的事实(例如,迭代器没有设置),尽管使用islice的一些解决方案可能还可以,但我对此感到担忧。
第三,itertools-grouper方法有效,但该方法依赖于zip_langest(或zip)函数的内部行为,而这些行为不是其发布行为的一部分。特别是,grouper函数只起作用,因为在zip_langest(i0…In)中,下一个函数总是按next(i0)、next(i 1)、……的顺序调用。。。在重新开始之前。当grouper传递同一迭代器对象的n个副本时,它依赖于此行为。
最后,虽然下面的解决方案可以得到改进,但如果您对上面的假设进行了批评,即子迭代器是按顺序访问的,并且在没有这个假设的情况下被完全阅读,则必须隐式(通过调用链)或显式(通过deques或其他数据结构)为每个子迭代程序存储元素。所以,不要浪费时间(就像我所做的那样),假设人们可以用一些巧妙的技巧来解决这个问题。
def paged_iter(iterat, n):
itr = iter(iterat)
deq = None
try:
while(True):
deq = collections.deque(maxlen=n)
for q in range(n):
deq.append(next(itr))
yield (i for i in deq)
except StopIteration:
yield (i for i in deq)
还可以将utilspie库的get_chunks函数用作:
>>> from utilspie import iterutils
>>> a = [1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list(iterutils.get_chunks(a, 5))
[[1, 2, 3, 4, 5], [6, 7, 8, 9]]
您可以通过pip安装utilspie:
sudo pip install utilspie
免责声明:我是utilspie库的创建者。
这里有一个使用itertools.groupby的想法:
def chunks(l, n):
c = itertools.count()
return (it for _, it in itertools.groupby(l, lambda x: next(c)//n))
这将返回一个生成器。如果需要列表列表,只需将最后一行替换为
return [list(it) for _, it in itertools.groupby(l, lambda x: next(c)//n)]
返回列表列表示例:
>>> chunks('abcdefghij', 4)
[['a', 'b', 'c', 'd'], ['e', 'f', 'g', 'h'], ['i', 'j']]
(因此,是的,这会受到“矮子问题”的影响,在特定情况下,这可能是问题,也可能不是问题。)
还有一个解决方案
def make_chunks(data, chunk_size):
while data:
chunk, data = data[:chunk_size], data[chunk_size:]
yield chunk
>>> for chunk in make_chunks([1, 2, 3, 4, 5, 6, 7], 2):
... print chunk
...
[1, 2]
[3, 4]
[5, 6]
[7]
>>>
这适用于v2/v3,可内联,基于生成器,仅使用标准库:
import itertools
def split_groups(iter_in, group_size):
return ((x for _, x in item) for _, item in itertools.groupby(enumerate(iter_in), key=lambda x: x[0] // group_size))
没有魔力,但简单而正确:
def chunks(iterable, n):
"""Yield successive n-sized chunks from iterable."""
values = []
for i, item in enumerate(iterable, 1):
values.append(item)
if i % n == 0:
yield values
values = []
if values:
yield values
我想我没有看到这个选项,所以只需添加另一个:):
def chunks(iterable, chunk_size):
i = 0;
while i < len(iterable):
yield iterable[i:i+chunk_size]
i += chunk_size
我很好奇不同方法的性能,这里是:
在Python 3.5.1上测试
import time
batch_size = 7
arr_len = 298937
#---------slice-------------
print("\r\nslice")
start = time.time()
arr = [i for i in range(0, arr_len)]
while True:
if not arr:
break
tmp = arr[0:batch_size]
arr = arr[batch_size:-1]
print(time.time() - start)
#-----------index-----------
print("\r\nindex")
arr = [i for i in range(0, arr_len)]
start = time.time()
for i in range(0, round(len(arr) / batch_size + 1)):
tmp = arr[batch_size * i : batch_size * (i + 1)]
print(time.time() - start)
#----------batches 1------------
def batch(iterable, n=1):
l = len(iterable)
for ndx in range(0, l, n):
yield iterable[ndx:min(ndx + n, l)]
print("\r\nbatches 1")
arr = [i for i in range(0, arr_len)]
start = time.time()
for x in batch(arr, batch_size):
tmp = x
print(time.time() - start)
#----------batches 2------------
from itertools import islice, chain
def batch(iterable, size):
sourceiter = iter(iterable)
while True:
batchiter = islice(sourceiter, size)
yield chain([next(batchiter)], batchiter)
print("\r\nbatches 2")
arr = [i for i in range(0, arr_len)]
start = time.time()
for x in batch(arr, batch_size):
tmp = x
print(time.time() - start)
#---------chunks-------------
def chunks(l, n):
"""Yield successive n-sized chunks from l."""
for i in range(0, len(l), n):
yield l[i:i + n]
print("\r\nchunks")
arr = [i for i in range(0, arr_len)]
start = time.time()
for x in chunks(arr, batch_size):
tmp = x
print(time.time() - start)
#-----------grouper-----------
from itertools import zip_longest # for Python 3.x
#from six.moves import zip_longest # for both (uses the six compat library)
def grouper(iterable, n, padvalue=None):
"grouper(3, 'abcdefg', 'x') --> ('a','b','c'), ('d','e','f'), ('g','x','x')"
return zip_longest(*[iter(iterable)]*n, fillvalue=padvalue)
arr = [i for i in range(0, arr_len)]
print("\r\ngrouper")
start = time.time()
for x in grouper(arr, batch_size):
tmp = x
print(time.time() - start)
结果:
slice
31.18285083770752
index
0.02184295654296875
batches 1
0.03503894805908203
batches 2
0.22681021690368652
chunks
0.019841909408569336
grouper
0.006506919860839844
我不喜欢按块大小拆分元素的想法,例如,脚本可以将101到3个块划分为[50,50,1]。为了我的需要,我需要按比例分配,保持秩序不变。首先我写了自己的剧本,效果很好,而且很简单。但我后来看到了这个答案,剧本比我的好,我想是这样的。这是我的脚本:
def proportional_dividing(N, n):
"""
N - length of array (bigger number)
n - number of chunks (smaller number)
output - arr, containing N numbers, diveded roundly to n chunks
"""
arr = []
if N == 0:
return arr
elif n == 0:
arr.append(N)
return arr
r = N // n
for i in range(n-1):
arr.append(r)
arr.append(N-r*(n-1))
last_n = arr[-1]
# last number always will be r <= last_n < 2*r
# when last_n == r it's ok, but when last_n > r ...
if last_n > r:
# ... and if difference too big (bigger than 1), then
if abs(r-last_n) > 1:
#[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 7] # N=29, n=12
# we need to give unnecessary numbers to first elements back
diff = last_n - r
for k in range(diff):
arr[k] += 1
arr[-1] = r
# and we receive [3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2]
return arr
def split_items(items, chunks):
arr = proportional_dividing(len(items), chunks)
splitted = []
for chunk_size in arr:
splitted.append(items[:chunk_size])
items = items[chunk_size:]
print(splitted)
return splitted
items = [1,2,3,4,5,6,7,8,9,10,11]
chunks = 3
split_items(items, chunks)
split_items(['a','b','c','d','e','f','g','h','i','g','k','l', 'm'], 3)
split_items(['a','b','c','d','e','f','g','h','i','g','k','l', 'm', 'n'], 3)
split_items(range(100), 4)
split_items(range(99), 4)
split_items(range(101), 4)
和输出:
[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11]]
[['a', 'b', 'c', 'd'], ['e', 'f', 'g', 'h'], ['i', 'g', 'k', 'l', 'm']]
[['a', 'b', 'c', 'd', 'e'], ['f', 'g', 'h', 'i', 'g'], ['k', 'l', 'm', 'n']]
[range(0, 25), range(25, 50), range(50, 75), range(75, 100)]
[range(0, 25), range(25, 50), range(50, 75), range(75, 99)]
[range(0, 25), range(25, 50), range(50, 75), range(75, 101)]
不要重新发明轮子。
更新:即将发布的Python 3.12引入了itertools.batch,最终解决了这个问题。见下文。
鉴于
import itertools as it
import collections as ct
import more_itertools as mit
iterable = range(11)
n = 3
Code
itertools.batch++
list(it.batched(iterable, n))
# [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10]]
更多工具+
list(mit.chunked(iterable, n))
# [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10]]
list(mit.sliced(iterable, n))
# [range(0, 3), range(3, 6), range(6, 9), range(9, 11)]
list(mit.grouper(n, iterable))
# [(0, 1, 2), (3, 4, 5), (6, 7, 8), (9, 10, None)]
list(mit.windowed(iterable, len(iterable)//n, step=n))
# [(0, 1, 2), (3, 4, 5), (6, 7, 8), (9, 10, None)]
list(mit.chunked_even(iterable, n))
# [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10]]
(或DIY,如果你愿意)
标准库
list(it.zip_longest(*[iter(iterable)] * n))
# [(0, 1, 2), (3, 4, 5), (6, 7, 8), (9, 10, None)]
d = {}
for i, x in enumerate(iterable):
d.setdefault(i//n, []).append(x)
list(d.values())
# [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10]]
dd = ct.defaultdict(list)
for i, x in enumerate(iterable):
dd[i//n].append(x)
list(dd.values())
# [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10]]
工具书类
more_itertools.chunked(相关已发布)更多intertools.slicedmore_itertools.grouper(相关文章)more_itertools.windowd(另请参见错开、zip_offset)更多intertools.chunked_evenzip_langest(相关帖子,相关帖子)setdefault(排序结果需要Python 3.6+)collections.defaultdict(排序结果需要Python 3.6+)
+第三方库,实现itertools配方等。>pip安装更多工具
++Python标准库3.12+中包含的.batched类似于more_itertools.chunked。
延迟加载版本
导入pprintpprint.pprint(列表(块(范围(10,75),10))[范围(10、20),范围(20、30),范围(30、40),范围(40、50),范围(50、60),范围(60、70),范围(70,75)]将此实现的结果与接受答案的示例使用结果进行比较。
上面的许多函数都假定整个可迭代函数的长度是预先知道的,或者至少计算起来很便宜。
对于一些流式对象,这意味着首先将完整数据加载到内存中(例如下载整个文件)以获取长度信息。
但是,如果您还不知道完整大小,可以使用以下代码:
def chunks(iterable, size):
"""
Yield successive chunks from iterable, being `size` long.
https://stackoverflow.com/a/55776536/3423324
:param iterable: The object you want to split into pieces.
:param size: The size each of the resulting pieces should have.
"""
i = 0
while True:
sliced = iterable[i:i + size]
if len(sliced) == 0:
# to suppress stuff like `range(max, max)`.
break
# end if
yield sliced
if len(sliced) < size:
# our slice is not the full length, so we must have passed the end of the iterator
break
# end if
i += size # so we start the next chunk at the right place.
# end while
# end def
这之所以有效,是因为如果您传递了一个iterable的结尾,slice命令将返回less/no元素:
"abc"[0:2] == 'ab'
"abc"[2:4] == 'c'
"abc"[4:6] == ''
我们现在使用切片的结果,并计算生成的块的长度。如果它低于我们的预期,我们知道我们可以结束迭代。
这样,除非访问,否则不会执行迭代器。
python-pydash包可能是一个不错的选择。
from pydash.arrays import chunk
ids = ['22', '89', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '1']
chunk_ids = chunk(ids,5)
print(chunk_ids)
# output: [['22', '89', '2', '3', '4'], ['5', '6', '7', '8', '9'], ['10', '11', '1']]
有关更多签出pydash块列表的信息
这个问题让我想起Raku(以前的Perl6).comb(n)方法。它将字符串分成n个大小的块。(还有更多,但我会省略细节。)
在Python3中实现一个类似的函数作为lambda表达式非常简单:
comb = lambda s,n: (s[i:i+n] for i in range(0,len(s),n))
然后你可以这样称呼它:
some_list = list(range(0, 20)) # creates a list of 20 elements
generator = comb(some_list, 4) # creates a generator that will generate lists of 4 elements
for sublist in generator:
print(sublist) # prints a sublist of four elements, as it's generated
当然,您不必将生成器分配给变量;你可以直接这样循环:
for sublist in comb(some_list, 4):
print(sublist) # prints a sublist of four elements, as it's generated
另外,此comb()函数还对字符串进行操作:
list( comb('catdogant', 3) ) # returns ['cat', 'dog', 'ant']
一种老式的方法,不需要itertools,但仍然可以使用任意生成器:
def chunks(g, n):
"""divide a generator 'g' into small chunks
Yields:
a chunk that has 'n' or less items
"""
n = max(1, n)
buff = []
for item in g:
buff.append(item)
if len(buff) == n:
yield buff
buff = []
if buff:
yield buff
使用Python 3.8中的赋值表达式,它变得非常好:
import itertools
def batch(iterable, size):
it = iter(iterable)
while item := list(itertools.islice(it, size)):
yield item
这适用于任意可迭代的对象,而不仅仅是列表。
>>> import pprint
>>> pprint.pprint(list(batch(range(75), 10)))
[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
[20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
[30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
[40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
[50, 51, 52, 53, 54, 55, 56, 57, 58, 59],
[60, 61, 62, 63, 64, 65, 66, 67, 68, 69],
[70, 71, 72, 73, 74]]
更新
从Python 3.12开始,这个精确的实现可以作为itertools.batch获得
def main():
print(chunkify([1,2,3,4,5,6],2))
def chunkify(list, n):
chunks = []
for i in range(0, len(list), n):
chunks.append(list[i:i+n])
return chunks
main()
我认为这很简单,可以为您提供数组的一部分。
任何可迭代的通用分块器,使用户可以选择如何在结尾处处理部分分块。
在Python 3上测试。
分块.py
from enum import Enum
class PartialChunkOptions(Enum):
INCLUDE = 0
EXCLUDE = 1
PAD = 2
ERROR = 3
class PartialChunkException(Exception):
pass
def chunker(iterable, n, on_partial=PartialChunkOptions.INCLUDE, pad=None):
"""
A chunker yielding n-element lists from an iterable, with various options
about what to do about a partial chunk at the end.
on_partial=PartialChunkOptions.INCLUDE (the default):
include the partial chunk as a short (<n) element list
on_partial=PartialChunkOptions.EXCLUDE
do not include the partial chunk
on_partial=PartialChunkOptions.PAD
pad to an n-element list
(also pass pad=<pad_value>, default None)
on_partial=PartialChunkOptions.ERROR
raise a RuntimeError if a partial chunk is encountered
"""
on_partial = PartialChunkOptions(on_partial)
iterator = iter(iterable)
while True:
vals = []
for i in range(n):
try:
vals.append(next(iterator))
except StopIteration:
if vals:
if on_partial == PartialChunkOptions.INCLUDE:
yield vals
elif on_partial == PartialChunkOptions.EXCLUDE:
pass
elif on_partial == PartialChunkOptions.PAD:
yield vals + [pad] * (n - len(vals))
elif on_partial == PartialChunkOptions.ERROR:
raise PartialChunkException
return
return
yield vals
测试.py
import chunker
chunk_size = 3
for it in (range(100, 107),
range(100, 109)):
print("\nITERABLE TO CHUNK: {}".format(it))
print("CHUNK SIZE: {}".format(chunk_size))
for option in chunker.PartialChunkOptions.__members__.values():
print("\noption {} used".format(option))
try:
for chunk in chunker.chunker(it, chunk_size, on_partial=option):
print(chunk)
except chunker.PartialChunkException:
print("PartialChunkException was raised")
print("")
test.py的输出
ITERABLE TO CHUNK: range(100, 107)
CHUNK SIZE: 3
option PartialChunkOptions.INCLUDE used
[100, 101, 102]
[103, 104, 105]
[106]
option PartialChunkOptions.EXCLUDE used
[100, 101, 102]
[103, 104, 105]
option PartialChunkOptions.PAD used
[100, 101, 102]
[103, 104, 105]
[106, None, None]
option PartialChunkOptions.ERROR used
[100, 101, 102]
[103, 104, 105]
PartialChunkException was raised
ITERABLE TO CHUNK: range(100, 109)
CHUNK SIZE: 3
option PartialChunkOptions.INCLUDE used
[100, 101, 102]
[103, 104, 105]
[106, 107, 108]
option PartialChunkOptions.EXCLUDE used
[100, 101, 102]
[103, 104, 105]
[106, 107, 108]
option PartialChunkOptions.PAD used
[100, 101, 102]
[103, 104, 105]
[106, 107, 108]
option PartialChunkOptions.ERROR used
[100, 101, 102]
[103, 104, 105]
[106, 107, 108]
抽象将是
l = [1,2,3,4,5,6,7,8,9]
n = 3
outList = []
for i in range(n, len(l) + n, n):
outList.append(l[i-n:i])
print(outList)
这将打印:
[[1, 2, 3], [4, 5, 6], [7, 8, 9]]
我创建了这两个漂亮的一行程序,它们既高效又懒惰,输入和输出都是可迭代的,而且它们不依赖于任何模块:
首先,一行是完全懒惰的,这意味着它返回迭代器生成迭代器(即,生成的每个块都是迭代器对块的元素进行迭代),如果块非常大或元素一个接一个地缓慢生成,并且在生成时应立即可用,则此版本适用于这种情况:
在线试用!
chunk_iters = lambda it, n: ((e for i, g in enumerate(((f,), cit)) for j, e in zip(range((1, n - 1)[i]), g)) for cit in (iter(it),) for f in cit)
第二行返回生成列表的迭代器。一旦整个块的元素通过输入迭代器变得可用,或者到达最后一个块的最后一个元素,就会生成每个列表。如果输入元素快速生成或立即全部可用,则应使用此版本。应该使用其他明智的第一个更懒惰的一行代码版本。
在线试用!
chunk_lists = lambda it, n: (l for l in ([],) for i, g in enumerate((it, ((),))) for e in g for l in (l[:len(l) % n] + [e][:1 - i],) if (len(l) % n == 0) != i)
此外,我还提供了第一个chunk_iter的多行版本一行,它返回迭代器生成另一个迭代器(遍历每个chunk的元素):
在线试用!
def chunk_iters(it, n):
cit = iter(it)
def one_chunk(f):
yield f
for i, e in zip(range(n - 1), cit):
yield e
for f in cit:
yield one_chunk(f)
一个简单的解决方案
OP已请求“相等大小的块”。我将“等尺寸”理解为“平衡”尺寸:如果尺寸不可能相等(例如,23/5),我们正在寻找尺寸大致相同的物品组。
这里的输入是:
项目列表:input_list(例如,23个数字的列表)要拆分这些项目的组数:n个组(例如5个)
输入:
input_list = list(range(23))
n_groups = 5
连续元素组:
approx_sizes = len(input_list)/n_groups
groups_cont = [input_list[int(i*approx_sizes):int((i+1)*approx_sizes)]
for i in range(n_groups)]
“每N个”元素组:
groups_leap = [input_list[i::n_groups]
for i in range(n_groups)]
后果
print(len(input_list))
print('Contiguous elements lists:')
print(groups_cont)
print('Leap every "N" items lists:')
print(groups_leap)
将输出:23连续元素列表:[[0, 1, 2, 3], [4, 5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16, 17], [18, 19, 20, 21, 22]]跳过每“N”个项目列表:[[0, 5, 10, 15, 20], [1, 6, 11, 16, 21], [2, 7, 12, 17, 22], [3, 8, 13, 18], [4, 9, 14, 19]]
这项任务可以在公认答案中使用生成器轻松完成。我正在添加实现长度方法的类实现,这可能对某些人有用。我需要知道进度(使用tqdm),所以生成器应该返回块的数量。
class ChunksIterator(object):
def __init__(self, data, n):
self._data = data
self._l = len(data)
self._n = n
def __iter__(self):
for i in range(0, self._l, self._n):
yield self._data[i:i + self._n]
def __len__(self):
rem = 1 if self._l % self._n != 0 else 0
return self._l // self._n + rem
用法:
it = ChunksIterator([1,2,3,4,5,6,7,8,9], 2)
print(len(it))
for i in it:
print(i)
senderle答案的一个线性版本:
from itertools import islice
from functools import partial
seq = [1,2,3,4,5,6,7]
size = 3
result = list(iter(partial(lambda it: tuple(islice(it, size)), iter(seq)), ()))
assert result == [(1, 2, 3), (4, 5, 6), (7,)]
假设列表是第一个
import math
# length of the list len(lst) is ln
# size of a chunk is size
for num in range ( math.ceil(ln/size) ):
start, end = num*size, min((num+1)*size, ln)
print(lst[start:end])
用户@tzot的解决方案zip_langest(*[iter(lst)]*n,fillvalue=padvalue)非常优雅,但如果lst的长度不能被n整除,它会填充最后一个子列表,以保持其长度与其他子列表的长度匹配。然而,如果这不可取,那么只需使用zip()生成类似的循环zip,并将lst的剩余元素(不能生成“完整”子列表)附加到输出即可。
输出示例为ABCDEFG,3->ABC DEF G。
单线版本(Python>=3.8):
list(map(list, zip(*[iter(lst)]*n))) + ([rest] if (rest:=lst[len(lst)//n*n : ]) else [])
A函数:
def chunkify(lst, chunk_size):
nested = list(map(list, zip(*[iter(lst)]*chunk_size)))
rest = lst[len(lst)//chunk_size*chunk_size: ]
if rest:
nested.append(rest)
return nested
生成器(尽管每个批次都是一个元组):
def chunkify(lst, chunk_size):
for tup in zip(*[iter(lst)]*chunk_size):
yield tup
rest = tuple(lst[len(lst)//chunk_size*chunk_size: ])
if rest:
yield rest
它比这里的一些最流行的答案产生相同的输出更快。
my_list, n = list(range(1_000_000)), 12
%timeit list(chunks(my_list, n)) # @Ned_Batchelder
# 36.4 ms ± 1.6 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
%timeit [my_list[i:i+n] for i in range(0, len(my_list), n)] # @Ned_Batchelder
# 34.6 ms ± 1.12 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
%timeit it = iter(my_list); list(iter(lambda: list(islice(it, n)), [])) # @senderle
# 60.6 ms ± 5.36 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
%timeit list(mit.chunked(my_list, n)) # @pylang
# 59.4 ms ± 4.92 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
%timeit chunkify(my_list, n)
# 25.8 ms ± 1.84 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
同样,从Python 3.12开始,这个功能将作为itertools模块中的批处理方法来实现(目前是一个配方),因此这个答案很可能会被Python 3.12淘汰。
您可以使用更多的intertools.chunked_甚至与math.eil一起使用。这可能是最容易理解的吗?
from math import ceil
import more_itertools as mit
from pprint import pprint
pprint([*mit.chunked_even(range(19), ceil(19 / 5))])
# [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15], [16, 17, 18]]
pprint([*mit.chunked_even(range(20), ceil(20 / 5))])
# [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15], [16, 17, 18, 19]]
pprint([*mit.chunked_even(range(21), ceil(21 / 5))])
# [[0, 1, 2, 3, 4],
# [5, 6, 7, 8],
# [9, 10, 11, 12],
# [13, 14, 15, 16],
# [17, 18, 19, 20]]
pprint([*mit.chunked_even(range(3), ceil(3 / 5))])
# [[0], [1], [2]]
itertools模块中的配方提供了两种方法来实现这一点,具体取决于您希望如何处理最终的奇数大小的批次(保留它、用填充值填充它、忽略它或引发异常):
from itertools import islice, izip_longest
def batched(iterable, n):
"Batch data into lists of length n. The last batch may be shorter."
# batched('ABCDEFG', 3) --> ABC DEF G
it = iter(iterable)
while True:
batch = list(islice(it, n))
if not batch:
return
yield batch
def grouper(iterable, n, *, incomplete='fill', fillvalue=None):
"Collect data into non-overlapping fixed-length chunks or blocks"
# grouper('ABCDEFG', 3, fillvalue='x') --> ABC DEF Gxx
# grouper('ABCDEFG', 3, incomplete='strict') --> ABC DEF ValueError
# grouper('ABCDEFG', 3, incomplete='ignore') --> ABC DEF
args = [iter(iterable)] * n
if incomplete == 'fill':
return zip_longest(*args, fillvalue=fillvalue)
if incomplete == 'strict':
return zip(*args, strict=True)
if incomplete == 'ignore':
return zip(*args)
else:
raise ValueError('Expected fill, strict, or ignore')