如何将任意长度的列表拆分为大小相等的块?


请参阅如果数据结果将直接用于循环,并且不需要存储,则如何以块形式遍历列表。

对于字符串输入的同一问题,请参见每n个字符拆分字符串?。相同的技术通常适用,但也有一些变化。


当前回答

如何将列表分割成大小均匀的块?

对我来说,“大小均匀的块”意味着它们都是相同的长度,或者除非有这种选择,长度上的差异最小。例如,21个项目的5个篮子可能具有以下结果:

>>> import statistics
>>> statistics.variance([5,5,5,5,1]) 
3.2
>>> statistics.variance([5,4,4,4,4]) 
0.19999999999999998

更倾向于后一种结果的一个实际原因是:如果你使用这些函数来分配工作,你已经内置了一个可能比其他人完成得好的前景,因此当其他人继续努力工作时,它会无所事事。

此处对其他答案的批评

当我最初写这个答案时,没有一个其他答案是大小均匀的块——它们都会在最后留下一个小块,所以它们没有很好地平衡,并且长度的差异超过了必要的范围。

例如,当前顶部答案以:

[60, 61, 62, 63, 64, 65, 66, 67, 68, 69],
[70, 71, 72, 73, 74]]

其他如列表(grouper(3,range(7))和块(range(7,3))都返回:[(0,1,2),(3,4,5),(6,None,None)]。“无”只是填充,在我看来相当不雅。他们并没有将可迭代项平均分块。

为什么我们不能更好地划分这些呢?

循环解决方案

一个使用itertools.cycle的高级平衡解决方案,这就是我今天可能采用的方法。设置如下:

from itertools import cycle
items = range(10, 75)
number_of_baskets = 10

现在我们需要我们的列表来填充元素:

baskets = [[] for _ in range(number_of_baskets)]

最后,我们将要分配的元素与一个篮子循环压缩在一起,直到元素用完,从语义上讲,这正是我们想要的:

for element, basket in zip(items, cycle(baskets)):
    basket.append(element)

结果如下:

>>> from pprint import pprint
>>> pprint(baskets)
[[10, 20, 30, 40, 50, 60, 70],
 [11, 21, 31, 41, 51, 61, 71],
 [12, 22, 32, 42, 52, 62, 72],
 [13, 23, 33, 43, 53, 63, 73],
 [14, 24, 34, 44, 54, 64, 74],
 [15, 25, 35, 45, 55, 65],
 [16, 26, 36, 46, 56, 66],
 [17, 27, 37, 47, 57, 67],
 [18, 28, 38, 48, 58, 68],
 [19, 29, 39, 49, 59, 69]]

为了使这个解决方案产品化,我们编写了一个函数,并提供了类型注释:

from itertools import cycle
from typing import List, Any

def cycle_baskets(items: List[Any], maxbaskets: int) -> List[List[Any]]:
    baskets = [[] for _ in range(min(maxbaskets, len(items)))]
    for item, basket in zip(items, cycle(baskets)):
        basket.append(item)
    return baskets

在上面,我们列出了物品清单,以及篮子的最大数量。我们创建一个空列表列表,在其中以循环方式追加每个元素。

另一个优雅的解决方案是使用切片,特别是不太常用的切片步骤参数。即。:

start = 0
stop = None
step = number_of_baskets

first_basket = items[start:stop:step]

这一点特别优雅,因为切片不关心数据的长度-结果,我们的第一个篮子,只要它需要的长度就可以了。我们只需要增加每个篮子的起点。

事实上,这可能是一行代码,但为了可读性和避免代码过长,我们将使用多行代码:

from typing import List, Any

def slice_baskets(items: List[Any], maxbaskets: int) -> List[List[Any]]:
    n_baskets = min(maxbaskets, len(items))
    return [items[i::n_baskets] for i in range(n_baskets)]

来自itertools模块的islice将提供一种懒惰的迭代方法,就像问题中最初要求的那样。

我不认为大多数用例会受益匪浅,因为原始数据已经在列表中完全具体化,但对于大型数据集,它可以节省近一半的内存使用。

from itertools import islice
from typing import List, Any, Generator
    
def yield_islice_baskets(items: List[Any], maxbaskets: int) -> Generator[List[Any], None, None]:
    n_baskets = min(maxbaskets, len(items))
    for i in range(n_baskets):
        yield islice(items, i, None, n_baskets)

查看结果:

from pprint import pprint

items = list(range(10, 75))
pprint(cycle_baskets(items, 10))
pprint(slice_baskets(items, 10))
pprint([list(s) for s in yield_islice_baskets(items, 10)])

更新了以前的解决方案

这是另一个平衡的解决方案,改编自我过去在生产中使用的函数,它使用模运算符:

def baskets_from(items, maxbaskets=25):
    baskets = [[] for _ in range(maxbaskets)]
    for i, item in enumerate(items):
        baskets[i % maxbaskets].append(item)
    return filter(None, baskets) 

我创建了一个生成器,如果您将其放入列表中,它也会执行同样的操作:

def iter_baskets_from(items, maxbaskets=3):
    '''generates evenly balanced baskets from indexable iterable'''
    item_count = len(items)
    baskets = min(item_count, maxbaskets)
    for x_i in range(baskets):
        yield [items[y_i] for y_i in range(x_i, item_count, baskets)]
    

最后,由于我看到上述所有函数都以连续的顺序返回元素(正如给定的那样):

def iter_baskets_contiguous(items, maxbaskets=3, item_count=None):
    '''
    generates balanced baskets from iterable, contiguous contents
    provide item_count if providing a iterator that doesn't support len()
    '''
    item_count = item_count or len(items)
    baskets = min(item_count, maxbaskets)
    items = iter(items)
    floor = item_count // baskets 
    ceiling = floor + 1
    stepdown = item_count % baskets
    for x_i in range(baskets):
        length = ceiling if x_i < stepdown else floor
        yield [items.next() for _ in range(length)]

输出

要测试它们:

print(baskets_from(range(6), 8))
print(list(iter_baskets_from(range(6), 8)))
print(list(iter_baskets_contiguous(range(6), 8)))
print(baskets_from(range(22), 8))
print(list(iter_baskets_from(range(22), 8)))
print(list(iter_baskets_contiguous(range(22), 8)))
print(baskets_from('ABCDEFG', 3))
print(list(iter_baskets_from('ABCDEFG', 3)))
print(list(iter_baskets_contiguous('ABCDEFG', 3)))
print(baskets_from(range(26), 5))
print(list(iter_baskets_from(range(26), 5)))
print(list(iter_baskets_contiguous(range(26), 5)))

打印结果:

[[0], [1], [2], [3], [4], [5]]
[[0], [1], [2], [3], [4], [5]]
[[0], [1], [2], [3], [4], [5]]
[[0, 8, 16], [1, 9, 17], [2, 10, 18], [3, 11, 19], [4, 12, 20], [5, 13, 21], [6, 14], [7, 15]]
[[0, 8, 16], [1, 9, 17], [2, 10, 18], [3, 11, 19], [4, 12, 20], [5, 13, 21], [6, 14], [7, 15]]
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11], [12, 13, 14], [15, 16, 17], [18, 19], [20, 21]]
[['A', 'D', 'G'], ['B', 'E'], ['C', 'F']]
[['A', 'D', 'G'], ['B', 'E'], ['C', 'F']]
[['A', 'B', 'C'], ['D', 'E'], ['F', 'G']]
[[0, 5, 10, 15, 20, 25], [1, 6, 11, 16, 21], [2, 7, 12, 17, 22], [3, 8, 13, 18, 23], [4, 9, 14, 19, 24]]
[[0, 5, 10, 15, 20, 25], [1, 6, 11, 16, 21], [2, 7, 12, 17, 22], [3, 8, 13, 18, 23], [4, 9, 14, 19, 24]]
[[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15], [16, 17, 18, 19, 20], [21, 22, 23, 24, 25]]

注意,连续生成器以与其他两个相同的长度模式提供块,但这些项都是有序的,并且它们被均匀地划分,就像可以划分离散元素列表一样。

其他回答

>>> def f(x, n, acc=[]): return f(x[n:], n, acc+[(x[:n])]) if x else acc
>>> f("Hallo Welt", 3)
['Hal', 'lo ', 'Wel', 't']
>>> 

如果你在括号里-我拿起了一本关于Erlang的书:)

[AA[i:i+SS] for i in range(len(AA))[::SS]]

其中AA是数组,SS是块大小。例如:

>>> AA=range(10,21);SS=3
>>> [AA[i:i+SS] for i in range(len(AA))[::SS]]
[[10, 11, 12], [13, 14, 15], [16, 17, 18], [19, 20]]
# or [range(10, 13), range(13, 16), range(16, 19), range(19, 21)] in py3

要扩展py3中的范围,请执行以下操作

(py3) >>> [list(AA[i:i+SS]) for i in range(len(AA))[::SS]]
[[10, 11, 12], [13, 14, 15], [16, 17, 18], [19, 20]]

这是一个生成大小均匀的块的生成器:

def chunks(lst, n):
    """Yield successive n-sized chunks from lst."""
    for i in range(0, len(lst), n):
        yield lst[i:i + n]
import pprint
pprint.pprint(list(chunks(range(10, 75), 10)))
[[10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
 [20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
 [30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
 [40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
 [50, 51, 52, 53, 54, 55, 56, 57, 58, 59],
 [60, 61, 62, 63, 64, 65, 66, 67, 68, 69],
 [70, 71, 72, 73, 74]]

对于Python 2,使用xrange代替range:

def chunks(lst, n):
    """Yield successive n-sized chunks from lst."""
    for i in xrange(0, len(lst), n):
        yield lst[i:i + n]

下面是一行理解列表。不过,上面的方法更可取,因为使用命名函数使代码更容易理解。对于Python 3:

[lst[i:i + n] for i in range(0, len(lst), n)]

对于Python 2:

[lst[i:i + n] for i in xrange(0, len(lst), n)]

考虑使用matplotlib.cbook片段

例如:

import matplotlib.cbook as cbook
segments = cbook.pieces(np.arange(20), 3)
for s in segments:
     print s

就像@AaronHall我来这里找的是大小大致均匀的大块。对此有不同的解释。在我的例子中,如果期望的大小是N,我希望每个组的大小>=N。因此,在上述大多数情况下产生的孤儿应重新分配给其他群体。

这可以通过以下方式完成:

def nChunks(l, n):
    """ Yield n successive chunks from l.
    Works for lists,  pandas dataframes, etc
    """
    newn = int(1.0 * len(l) / n + 0.5)
    for i in xrange(0, n-1):
        yield l[i*newn:i*newn+newn]
    yield l[n*newn-newn:]

(通过将列表拆分为N个长度大致相等的部分),只需将其称为nChunks(l,l/N)或nChunk(l,floor(l/N))