如何将任意长度的列表拆分为大小相等的块?


请参阅如果数据结果将直接用于循环,并且不需要存储,则如何以块形式遍历列表。

对于字符串输入的同一问题,请参见每n个字符拆分字符串?。相同的技术通常适用,但也有一些变化。


当前回答

[AA[i:i+SS] for i in range(len(AA))[::SS]]

其中AA是数组,SS是块大小。例如:

>>> AA=range(10,21);SS=3
>>> [AA[i:i+SS] for i in range(len(AA))[::SS]]
[[10, 11, 12], [13, 14, 15], [16, 17, 18], [19, 20]]
# or [range(10, 13), range(13, 16), range(16, 19), range(19, 21)] in py3

要扩展py3中的范围,请执行以下操作

(py3) >>> [list(AA[i:i+SS]) for i in range(len(AA))[::SS]]
[[10, 11, 12], [13, 14, 15], [16, 17, 18], [19, 20]]

其他回答

抽象将是

l = [1,2,3,4,5,6,7,8,9]
n = 3
outList = []
for i in range(n, len(l) + n, n):
    outList.append(l[i-n:i])

print(outList)

这将打印:

[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

由于我必须这样做,下面是我的解决方案,给出了一个生成器和一个批量大小:

def pop_n_elems_from_generator(g, n):
    elems = []
    try:
        for idx in xrange(0, n):
            elems.append(g.next())
        return elems
    except StopIteration:
        return elems

在这一点上,我认为我们需要一个递归生成器,以防万一。。。

在python 2中:

def chunks(li, n):
    if li == []:
        return
    yield li[:n]
    for e in chunks(li[n:], n):
        yield e

在python 3中:

def chunks(li, n):
    if li == []:
        return
    yield li[:n]
    yield from chunks(li[n:], n)

此外,在大规模外星人入侵的情况下,装饰递归生成器可能会变得很方便:

def dec(gen):
    def new_gen(li, n):
        for e in gen(li, n):
            if e == []:
                return
            yield e
    return new_gen

@dec
def chunks(li, n):
    yield li[:n]
    for e in chunks(li[n:], n):
        yield e

下面我有一个解决方案确实有效,但比这个解决方案更重要的是对其他方法的一些评论。首先,一个好的解决方案不应该要求一个循环按顺序遍历子迭代器。如果我跑

g = paged_iter(list(range(50)), 11))
i0 = next(g)
i1 = next(g)
list(i1)
list(i0)

最后一个命令的适当输出是

 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

not

 []

正如这里大多数基于itertools的解决方案所返回的那样。这不仅仅是关于按顺序访问迭代器的常见无聊限制。想象一个消费者试图清理输入不良的数据,该数据颠倒了5的块的适当顺序,即数据看起来像[B5,A5,D5,C5],应该像[A5,B5,C5,D5](其中A5只是五个元素,而不是子列表)。该使用者将查看分组函数的声明行为,并毫不犹豫地编写一个类似

i = 0
out = []
for it in paged_iter(data,5)
    if (i % 2 == 0):
         swapped = it
    else: 
         out += list(it)
         out += list(swapped)
    i = i + 1

如果您偷偷摸摸地假设子迭代器总是按顺序完全使用,那么这将产生神秘的错误结果。如果你想交错块中的元素,情况就更糟了。

其次,大量建议的解决方案隐含地依赖于迭代器具有确定性顺序的事实(例如,迭代器没有设置),尽管使用islice的一些解决方案可能还可以,但我对此感到担忧。

第三,itertools-grouper方法有效,但该方法依赖于zip_langest(或zip)函数的内部行为,而这些行为不是其发布行为的一部分。特别是,grouper函数只起作用,因为在zip_langest(i0…In)中,下一个函数总是按next(i0)、next(i 1)、……的顺序调用。。。在重新开始之前。当grouper传递同一迭代器对象的n个副本时,它依赖于此行为。

最后,虽然下面的解决方案可以得到改进,但如果您对上面的假设进行了批评,即子迭代器是按顺序访问的,并且在没有这个假设的情况下被完全阅读,则必须隐式(通过调用链)或显式(通过deques或其他数据结构)为每个子迭代程序存储元素。所以,不要浪费时间(就像我所做的那样),假设人们可以用一些巧妙的技巧来解决这个问题。

def paged_iter(iterat, n):
    itr = iter(iterat)
    deq = None
    try:
        while(True):
            deq = collections.deque(maxlen=n)
            for q in range(n):
                deq.append(next(itr))
            yield (i for i in deq)
    except StopIteration:
        yield (i for i in deq)

我非常喜欢tzot和J.F.Sebastian提出的Python文档版本,但它有两个缺点:

它不是很明确我通常不希望在最后一个块中有填充值

我在代码中经常使用这个:

from itertools import islice

def chunks(n, iterable):
    iterable = iter(iterable)
    while True:
        yield tuple(islice(iterable, n)) or iterable.next()

更新:一个懒块版本:

from itertools import chain, islice

def chunks(n, iterable):
   iterable = iter(iterable)
   while True:
       yield chain([next(iterable)], islice(iterable, n-1))