如何将任意长度的列表拆分为大小相等的块?
请参阅如果数据结果将直接用于循环,并且不需要存储,则如何以块形式遍历列表。
对于字符串输入的同一问题,请参见每n个字符拆分字符串?。相同的技术通常适用,但也有一些变化。
如何将任意长度的列表拆分为大小相等的块?
请参阅如果数据结果将直接用于循环,并且不需要存储,则如何以块形式遍历列表。
对于字符串输入的同一问题,请参见每n个字符拆分字符串?。相同的技术通常适用,但也有一些变化。
当前回答
我很好奇不同方法的性能,这里是:
在Python 3.5.1上测试
import time
batch_size = 7
arr_len = 298937
#---------slice-------------
print("\r\nslice")
start = time.time()
arr = [i for i in range(0, arr_len)]
while True:
if not arr:
break
tmp = arr[0:batch_size]
arr = arr[batch_size:-1]
print(time.time() - start)
#-----------index-----------
print("\r\nindex")
arr = [i for i in range(0, arr_len)]
start = time.time()
for i in range(0, round(len(arr) / batch_size + 1)):
tmp = arr[batch_size * i : batch_size * (i + 1)]
print(time.time() - start)
#----------batches 1------------
def batch(iterable, n=1):
l = len(iterable)
for ndx in range(0, l, n):
yield iterable[ndx:min(ndx + n, l)]
print("\r\nbatches 1")
arr = [i for i in range(0, arr_len)]
start = time.time()
for x in batch(arr, batch_size):
tmp = x
print(time.time() - start)
#----------batches 2------------
from itertools import islice, chain
def batch(iterable, size):
sourceiter = iter(iterable)
while True:
batchiter = islice(sourceiter, size)
yield chain([next(batchiter)], batchiter)
print("\r\nbatches 2")
arr = [i for i in range(0, arr_len)]
start = time.time()
for x in batch(arr, batch_size):
tmp = x
print(time.time() - start)
#---------chunks-------------
def chunks(l, n):
"""Yield successive n-sized chunks from l."""
for i in range(0, len(l), n):
yield l[i:i + n]
print("\r\nchunks")
arr = [i for i in range(0, arr_len)]
start = time.time()
for x in chunks(arr, batch_size):
tmp = x
print(time.time() - start)
#-----------grouper-----------
from itertools import zip_longest # for Python 3.x
#from six.moves import zip_longest # for both (uses the six compat library)
def grouper(iterable, n, padvalue=None):
"grouper(3, 'abcdefg', 'x') --> ('a','b','c'), ('d','e','f'), ('g','x','x')"
return zip_longest(*[iter(iterable)]*n, fillvalue=padvalue)
arr = [i for i in range(0, arr_len)]
print("\r\ngrouper")
start = time.time()
for x in grouper(arr, batch_size):
tmp = x
print(time.time() - start)
结果:
slice
31.18285083770752
index
0.02184295654296875
batches 1
0.03503894805908203
batches 2
0.22681021690368652
chunks
0.019841909408569336
grouper
0.006506919860839844
其他回答
如果您知道列表大小:
def SplitList(mylist, chunk_size):
return [mylist[offs:offs+chunk_size] for offs in range(0, len(mylist), chunk_size)]
如果没有(迭代器):
def IterChunks(sequence, chunk_size):
res = []
for item in sequence:
res.append(item)
if len(res) >= chunk_size:
yield res
res = []
if res:
yield res # yield the last, incomplete, portion
在后一种情况下,如果您可以确保序列始终包含给定大小的整数个块(即没有不完整的最后一个块),则可以用更漂亮的方式重新表述。
>>> def f(x, n, acc=[]): return f(x[n:], n, acc+[(x[:n])]) if x else acc
>>> f("Hallo Welt", 3)
['Hal', 'lo ', 'Wel', 't']
>>>
如果你在括号里-我拿起了一本关于Erlang的书:)
您可以使用numpy的array_split函数,例如np.array_split(np.array(data),20),将其拆分为20个大小几乎相等的块。
要确保块的大小完全相等,请使用np.split。
我知道这有点过时,但还没有人提到numpy.array_split:
import numpy as np
lst = range(50)
np.array_split(lst, 5)
结果:
[array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
array([10, 11, 12, 13, 14, 15, 16, 17, 18, 19]),
array([20, 21, 22, 23, 24, 25, 26, 27, 28, 29]),
array([30, 31, 32, 33, 34, 35, 36, 37, 38, 39]),
array([40, 41, 42, 43, 44, 45, 46, 47, 48, 49])]
用户@tzot的解决方案zip_langest(*[iter(lst)]*n,fillvalue=padvalue)非常优雅,但如果lst的长度不能被n整除,它会填充最后一个子列表,以保持其长度与其他子列表的长度匹配。然而,如果这不可取,那么只需使用zip()生成类似的循环zip,并将lst的剩余元素(不能生成“完整”子列表)附加到输出即可。
输出示例为ABCDEFG,3->ABC DEF G。
单线版本(Python>=3.8):
list(map(list, zip(*[iter(lst)]*n))) + ([rest] if (rest:=lst[len(lst)//n*n : ]) else [])
A函数:
def chunkify(lst, chunk_size):
nested = list(map(list, zip(*[iter(lst)]*chunk_size)))
rest = lst[len(lst)//chunk_size*chunk_size: ]
if rest:
nested.append(rest)
return nested
生成器(尽管每个批次都是一个元组):
def chunkify(lst, chunk_size):
for tup in zip(*[iter(lst)]*chunk_size):
yield tup
rest = tuple(lst[len(lst)//chunk_size*chunk_size: ])
if rest:
yield rest
它比这里的一些最流行的答案产生相同的输出更快。
my_list, n = list(range(1_000_000)), 12
%timeit list(chunks(my_list, n)) # @Ned_Batchelder
# 36.4 ms ± 1.6 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
%timeit [my_list[i:i+n] for i in range(0, len(my_list), n)] # @Ned_Batchelder
# 34.6 ms ± 1.12 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
%timeit it = iter(my_list); list(iter(lambda: list(islice(it, n)), [])) # @senderle
# 60.6 ms ± 5.36 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
%timeit list(mit.chunked(my_list, n)) # @pylang
# 59.4 ms ± 4.92 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
%timeit chunkify(my_list, n)
# 25.8 ms ± 1.84 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
同样,从Python 3.12开始,这个功能将作为itertools模块中的批处理方法来实现(目前是一个配方),因此这个答案很可能会被Python 3.12淘汰。