如何将任意长度的列表拆分为大小相等的块?
请参阅如果数据结果将直接用于循环,并且不需要存储,则如何以块形式遍历列表。
对于字符串输入的同一问题,请参见每n个字符拆分字符串?。相同的技术通常适用,但也有一些变化。
如何将任意长度的列表拆分为大小相等的块?
请参阅如果数据结果将直接用于循环,并且不需要存储,则如何以块形式遍历列表。
对于字符串输入的同一问题,请参见每n个字符拆分字符串?。相同的技术通常适用,但也有一些变化。
当前回答
我知道这有点过时,但还没有人提到numpy.array_split:
import numpy as np
lst = range(50)
np.array_split(lst, 5)
结果:
[array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
array([10, 11, 12, 13, 14, 15, 16, 17, 18, 19]),
array([20, 21, 22, 23, 24, 25, 26, 27, 28, 29]),
array([30, 31, 32, 33, 34, 35, 36, 37, 38, 39]),
array([40, 41, 42, 43, 44, 45, 46, 47, 48, 49])]
其他回答
考虑使用matplotlib.cbook片段
例如:
import matplotlib.cbook as cbook
segments = cbook.pieces(np.arange(20), 3)
for s in segments:
print s
任何可迭代的通用分块器,使用户可以选择如何在结尾处处理部分分块。
在Python 3上测试。
分块.py
from enum import Enum
class PartialChunkOptions(Enum):
INCLUDE = 0
EXCLUDE = 1
PAD = 2
ERROR = 3
class PartialChunkException(Exception):
pass
def chunker(iterable, n, on_partial=PartialChunkOptions.INCLUDE, pad=None):
"""
A chunker yielding n-element lists from an iterable, with various options
about what to do about a partial chunk at the end.
on_partial=PartialChunkOptions.INCLUDE (the default):
include the partial chunk as a short (<n) element list
on_partial=PartialChunkOptions.EXCLUDE
do not include the partial chunk
on_partial=PartialChunkOptions.PAD
pad to an n-element list
(also pass pad=<pad_value>, default None)
on_partial=PartialChunkOptions.ERROR
raise a RuntimeError if a partial chunk is encountered
"""
on_partial = PartialChunkOptions(on_partial)
iterator = iter(iterable)
while True:
vals = []
for i in range(n):
try:
vals.append(next(iterator))
except StopIteration:
if vals:
if on_partial == PartialChunkOptions.INCLUDE:
yield vals
elif on_partial == PartialChunkOptions.EXCLUDE:
pass
elif on_partial == PartialChunkOptions.PAD:
yield vals + [pad] * (n - len(vals))
elif on_partial == PartialChunkOptions.ERROR:
raise PartialChunkException
return
return
yield vals
测试.py
import chunker
chunk_size = 3
for it in (range(100, 107),
range(100, 109)):
print("\nITERABLE TO CHUNK: {}".format(it))
print("CHUNK SIZE: {}".format(chunk_size))
for option in chunker.PartialChunkOptions.__members__.values():
print("\noption {} used".format(option))
try:
for chunk in chunker.chunker(it, chunk_size, on_partial=option):
print(chunk)
except chunker.PartialChunkException:
print("PartialChunkException was raised")
print("")
test.py的输出
ITERABLE TO CHUNK: range(100, 107)
CHUNK SIZE: 3
option PartialChunkOptions.INCLUDE used
[100, 101, 102]
[103, 104, 105]
[106]
option PartialChunkOptions.EXCLUDE used
[100, 101, 102]
[103, 104, 105]
option PartialChunkOptions.PAD used
[100, 101, 102]
[103, 104, 105]
[106, None, None]
option PartialChunkOptions.ERROR used
[100, 101, 102]
[103, 104, 105]
PartialChunkException was raised
ITERABLE TO CHUNK: range(100, 109)
CHUNK SIZE: 3
option PartialChunkOptions.INCLUDE used
[100, 101, 102]
[103, 104, 105]
[106, 107, 108]
option PartialChunkOptions.EXCLUDE used
[100, 101, 102]
[103, 104, 105]
[106, 107, 108]
option PartialChunkOptions.PAD used
[100, 101, 102]
[103, 104, 105]
[106, 107, 108]
option PartialChunkOptions.ERROR used
[100, 101, 102]
[103, 104, 105]
[106, 107, 108]
下面是一个处理任意可迭代项的生成器:
def split_seq(iterable, size):
it = iter(iterable)
item = list(itertools.islice(it, size))
while item:
yield item
item = list(itertools.islice(it, size))
例子:
>>> import pprint
>>> pprint.pprint(list(split_seq(xrange(75), 10)))
[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
[20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
[30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
[40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
[50, 51, 52, 53, 54, 55, 56, 57, 58, 59],
[60, 61, 62, 63, 64, 65, 66, 67, 68, 69],
[70, 71, 72, 73, 74]]
我很惊讶没有人想到使用iter的双参数形式:
from itertools import islice
def chunk(it, size):
it = iter(it)
return iter(lambda: tuple(islice(it, size)), ())
演示:
>>> list(chunk(range(14), 3))
[(0, 1, 2), (3, 4, 5), (6, 7, 8), (9, 10, 11), (12, 13)]
这适用于任何可迭代的对象,并延迟生成输出。它返回元组而不是迭代器,但我认为它还是有一定的优雅。它也不会垫;如果您需要填充,上面的一个简单变体就足够了:
from itertools import islice, chain, repeat
def chunk_pad(it, size, padval=None):
it = chain(iter(it), repeat(padval))
return iter(lambda: tuple(islice(it, size)), (padval,) * size)
演示:
>>> list(chunk_pad(range(14), 3))
[(0, 1, 2), (3, 4, 5), (6, 7, 8), (9, 10, 11), (12, 13, None)]
>>> list(chunk_pad(range(14), 3, 'a'))
[(0, 1, 2), (3, 4, 5), (6, 7, 8), (9, 10, 11), (12, 13, 'a')]
与基于izip_longest的解决方案一样,上面的解决方案也始终适用。据我所知,对于可选pad的函数,没有单行或双线itertools配方。通过结合以上两种方法,这一方法非常接近:
_no_padding = object()
def chunk(it, size, padval=_no_padding):
if padval == _no_padding:
it = iter(it)
sentinel = ()
else:
it = chain(iter(it), repeat(padval))
sentinel = (padval,) * size
return iter(lambda: tuple(islice(it, size)), sentinel)
演示:
>>> list(chunk(range(14), 3))
[(0, 1, 2), (3, 4, 5), (6, 7, 8), (9, 10, 11), (12, 13)]
>>> list(chunk(range(14), 3, None))
[(0, 1, 2), (3, 4, 5), (6, 7, 8), (9, 10, 11), (12, 13, None)]
>>> list(chunk(range(14), 3, 'a'))
[(0, 1, 2), (3, 4, 5), (6, 7, 8), (9, 10, 11), (12, 13, 'a')]
我相信这是提议的提供可选填充的最短的分块器。
正如Tomasz Gandor所观察到的,如果两个填充块遇到一长串填充值,它们会意外停止。以下是以合理方式解决该问题的最后一个变体:
_no_padding = object()
def chunk(it, size, padval=_no_padding):
it = iter(it)
chunker = iter(lambda: tuple(islice(it, size)), ())
if padval == _no_padding:
yield from chunker
else:
for ch in chunker:
yield ch if len(ch) == size else ch + (padval,) * (size - len(ch))
演示:
>>> list(chunk([1, 2, (), (), 5], 2))
[(1, 2), ((), ()), (5,)]
>>> list(chunk([1, 2, None, None, 5], 2, None))
[(1, 2), (None, None), (5, None)]
如果您知道列表大小:
def SplitList(mylist, chunk_size):
return [mylist[offs:offs+chunk_size] for offs in range(0, len(mylist), chunk_size)]
如果没有(迭代器):
def IterChunks(sequence, chunk_size):
res = []
for item in sequence:
res.append(item)
if len(res) >= chunk_size:
yield res
res = []
if res:
yield res # yield the last, incomplete, portion
在后一种情况下,如果您可以确保序列始终包含给定大小的整数个块(即没有不完整的最后一个块),则可以用更漂亮的方式重新表述。