如何将任意长度的列表拆分为大小相等的块?
请参阅如果数据结果将直接用于循环,并且不需要存储,则如何以块形式遍历列表。
对于字符串输入的同一问题,请参见每n个字符拆分字符串?。相同的技术通常适用,但也有一些变化。
如何将任意长度的列表拆分为大小相等的块?
请参阅如果数据结果将直接用于循环,并且不需要存储,则如何以块形式遍历列表。
对于字符串输入的同一问题,请参见每n个字符拆分字符串?。相同的技术通常适用,但也有一些变化。
当前回答
考虑使用matplotlib.cbook片段
例如:
import matplotlib.cbook as cbook
segments = cbook.pieces(np.arange(20), 3)
for s in segments:
print s
其他回答
[AA[i:i+SS] for i in range(len(AA))[::SS]]
其中AA是数组,SS是块大小。例如:
>>> AA=range(10,21);SS=3
>>> [AA[i:i+SS] for i in range(len(AA))[::SS]]
[[10, 11, 12], [13, 14, 15], [16, 17, 18], [19, 20]]
# or [range(10, 13), range(13, 16), range(16, 19), range(19, 21)] in py3
要扩展py3中的范围,请执行以下操作
(py3) >>> [list(AA[i:i+SS]) for i in range(len(AA))[::SS]]
[[10, 11, 12], [13, 14, 15], [16, 17, 18], [19, 20]]
由于我必须这样做,下面是我的解决方案,给出了一个生成器和一个批量大小:
def pop_n_elems_from_generator(g, n):
elems = []
try:
for idx in xrange(0, n):
elems.append(g.next())
return elems
except StopIteration:
return elems
我不喜欢按块大小拆分元素的想法,例如,脚本可以将101到3个块划分为[50,50,1]。为了我的需要,我需要按比例分配,保持秩序不变。首先我写了自己的剧本,效果很好,而且很简单。但我后来看到了这个答案,剧本比我的好,我想是这样的。这是我的脚本:
def proportional_dividing(N, n):
"""
N - length of array (bigger number)
n - number of chunks (smaller number)
output - arr, containing N numbers, diveded roundly to n chunks
"""
arr = []
if N == 0:
return arr
elif n == 0:
arr.append(N)
return arr
r = N // n
for i in range(n-1):
arr.append(r)
arr.append(N-r*(n-1))
last_n = arr[-1]
# last number always will be r <= last_n < 2*r
# when last_n == r it's ok, but when last_n > r ...
if last_n > r:
# ... and if difference too big (bigger than 1), then
if abs(r-last_n) > 1:
#[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 7] # N=29, n=12
# we need to give unnecessary numbers to first elements back
diff = last_n - r
for k in range(diff):
arr[k] += 1
arr[-1] = r
# and we receive [3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2]
return arr
def split_items(items, chunks):
arr = proportional_dividing(len(items), chunks)
splitted = []
for chunk_size in arr:
splitted.append(items[:chunk_size])
items = items[chunk_size:]
print(splitted)
return splitted
items = [1,2,3,4,5,6,7,8,9,10,11]
chunks = 3
split_items(items, chunks)
split_items(['a','b','c','d','e','f','g','h','i','g','k','l', 'm'], 3)
split_items(['a','b','c','d','e','f','g','h','i','g','k','l', 'm', 'n'], 3)
split_items(range(100), 4)
split_items(range(99), 4)
split_items(range(101), 4)
和输出:
[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11]]
[['a', 'b', 'c', 'd'], ['e', 'f', 'g', 'h'], ['i', 'g', 'k', 'l', 'm']]
[['a', 'b', 'c', 'd', 'e'], ['f', 'g', 'h', 'i', 'g'], ['k', 'l', 'm', 'n']]
[range(0, 25), range(25, 50), range(50, 75), range(75, 100)]
[range(0, 25), range(25, 50), range(50, 75), range(75, 99)]
[range(0, 25), range(25, 50), range(50, 75), range(75, 101)]
def split_seq(seq, num_pieces):
start = 0
for i in xrange(num_pieces):
stop = start + len(seq[i::num_pieces])
yield seq[start:stop]
start = stop
用法:
seq = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
for seq in split_seq(seq, 3):
print seq
我很好奇不同方法的性能,这里是:
在Python 3.5.1上测试
import time
batch_size = 7
arr_len = 298937
#---------slice-------------
print("\r\nslice")
start = time.time()
arr = [i for i in range(0, arr_len)]
while True:
if not arr:
break
tmp = arr[0:batch_size]
arr = arr[batch_size:-1]
print(time.time() - start)
#-----------index-----------
print("\r\nindex")
arr = [i for i in range(0, arr_len)]
start = time.time()
for i in range(0, round(len(arr) / batch_size + 1)):
tmp = arr[batch_size * i : batch_size * (i + 1)]
print(time.time() - start)
#----------batches 1------------
def batch(iterable, n=1):
l = len(iterable)
for ndx in range(0, l, n):
yield iterable[ndx:min(ndx + n, l)]
print("\r\nbatches 1")
arr = [i for i in range(0, arr_len)]
start = time.time()
for x in batch(arr, batch_size):
tmp = x
print(time.time() - start)
#----------batches 2------------
from itertools import islice, chain
def batch(iterable, size):
sourceiter = iter(iterable)
while True:
batchiter = islice(sourceiter, size)
yield chain([next(batchiter)], batchiter)
print("\r\nbatches 2")
arr = [i for i in range(0, arr_len)]
start = time.time()
for x in batch(arr, batch_size):
tmp = x
print(time.time() - start)
#---------chunks-------------
def chunks(l, n):
"""Yield successive n-sized chunks from l."""
for i in range(0, len(l), n):
yield l[i:i + n]
print("\r\nchunks")
arr = [i for i in range(0, arr_len)]
start = time.time()
for x in chunks(arr, batch_size):
tmp = x
print(time.time() - start)
#-----------grouper-----------
from itertools import zip_longest # for Python 3.x
#from six.moves import zip_longest # for both (uses the six compat library)
def grouper(iterable, n, padvalue=None):
"grouper(3, 'abcdefg', 'x') --> ('a','b','c'), ('d','e','f'), ('g','x','x')"
return zip_longest(*[iter(iterable)]*n, fillvalue=padvalue)
arr = [i for i in range(0, arr_len)]
print("\r\ngrouper")
start = time.time()
for x in grouper(arr, batch_size):
tmp = x
print(time.time() - start)
结果:
slice
31.18285083770752
index
0.02184295654296875
batches 1
0.03503894805908203
batches 2
0.22681021690368652
chunks
0.019841909408569336
grouper
0.006506919860839844