如何将任意长度的列表拆分为大小相等的块?
请参阅如果数据结果将直接用于循环,并且不需要存储,则如何以块形式遍历列表。
对于字符串输入的同一问题,请参见每n个字符拆分字符串?。相同的技术通常适用,但也有一些变化。
如何将任意长度的列表拆分为大小相等的块?
请参阅如果数据结果将直接用于循环,并且不需要存储,则如何以块形式遍历列表。
对于字符串输入的同一问题,请参见每n个字符拆分字符串?。相同的技术通常适用,但也有一些变化。
当前回答
我在这个问题的副本中看到了最棒的Python式答案:
from itertools import zip_longest
a = range(1, 16)
i = iter(a)
r = list(zip_longest(i, i, i))
>>> print(r)
[(1, 2, 3), (4, 5, 6), (7, 8, 9), (10, 11, 12), (13, 14, 15)]
您可以为任何n创建n元组。如果a=范围(1,15),那么结果将是:
[(1, 2, 3), (4, 5, 6), (7, 8, 9), (10, 11, 12), (13, 14, None)]
如果列表被平均划分,那么可以用zip替换zip_langest,否则三元组(13、14、None)将丢失。上面使用了Python 3。对于Python 2,请使用izip_length。
其他回答
还可以将utilspie库的get_chunks函数用作:
>>> from utilspie import iterutils
>>> a = [1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list(iterutils.get_chunks(a, 5))
[[1, 2, 3, 4, 5], [6, 7, 8, 9]]
您可以通过pip安装utilspie:
sudo pip install utilspie
免责声明:我是utilspie库的创建者。
这个问题让我想起Raku(以前的Perl6).comb(n)方法。它将字符串分成n个大小的块。(还有更多,但我会省略细节。)
在Python3中实现一个类似的函数作为lambda表达式非常简单:
comb = lambda s,n: (s[i:i+n] for i in range(0,len(s),n))
然后你可以这样称呼它:
some_list = list(range(0, 20)) # creates a list of 20 elements
generator = comb(some_list, 4) # creates a generator that will generate lists of 4 elements
for sublist in generator:
print(sublist) # prints a sublist of four elements, as it's generated
当然,您不必将生成器分配给变量;你可以直接这样循环:
for sublist in comb(some_list, 4):
print(sublist) # prints a sublist of four elements, as it's generated
另外,此comb()函数还对字符串进行操作:
list( comb('catdogant', 3) ) # returns ['cat', 'dog', 'ant']
非常简单的事情:
def chunks(xs, n):
n = max(1, n)
return (xs[i:i+n] for i in range(0, len(xs), n))
对于Python 2,使用xrange()代替range()。
itertools模块中的配方提供了两种方法来实现这一点,具体取决于您希望如何处理最终的奇数大小的批次(保留它、用填充值填充它、忽略它或引发异常):
from itertools import islice, izip_longest
def batched(iterable, n):
"Batch data into lists of length n. The last batch may be shorter."
# batched('ABCDEFG', 3) --> ABC DEF G
it = iter(iterable)
while True:
batch = list(islice(it, n))
if not batch:
return
yield batch
def grouper(iterable, n, *, incomplete='fill', fillvalue=None):
"Collect data into non-overlapping fixed-length chunks or blocks"
# grouper('ABCDEFG', 3, fillvalue='x') --> ABC DEF Gxx
# grouper('ABCDEFG', 3, incomplete='strict') --> ABC DEF ValueError
# grouper('ABCDEFG', 3, incomplete='ignore') --> ABC DEF
args = [iter(iterable)] * n
if incomplete == 'fill':
return zip_longest(*args, fillvalue=fillvalue)
if incomplete == 'strict':
return zip(*args, strict=True)
if incomplete == 'ignore':
return zip(*args)
else:
raise ValueError('Expected fill, strict, or ignore')
延迟加载版本
导入pprintpprint.pprint(列表(块(范围(10,75),10))[范围(10、20),范围(20、30),范围(30、40),范围(40、50),范围(50、60),范围(60、70),范围(70,75)]将此实现的结果与接受答案的示例使用结果进行比较。
上面的许多函数都假定整个可迭代函数的长度是预先知道的,或者至少计算起来很便宜。
对于一些流式对象,这意味着首先将完整数据加载到内存中(例如下载整个文件)以获取长度信息。
但是,如果您还不知道完整大小,可以使用以下代码:
def chunks(iterable, size):
"""
Yield successive chunks from iterable, being `size` long.
https://stackoverflow.com/a/55776536/3423324
:param iterable: The object you want to split into pieces.
:param size: The size each of the resulting pieces should have.
"""
i = 0
while True:
sliced = iterable[i:i + size]
if len(sliced) == 0:
# to suppress stuff like `range(max, max)`.
break
# end if
yield sliced
if len(sliced) < size:
# our slice is not the full length, so we must have passed the end of the iterator
break
# end if
i += size # so we start the next chunk at the right place.
# end while
# end def
这之所以有效,是因为如果您传递了一个iterable的结尾,slice命令将返回less/no元素:
"abc"[0:2] == 'ab'
"abc"[2:4] == 'c'
"abc"[4:6] == ''
我们现在使用切片的结果,并计算生成的块的长度。如果它低于我们的预期,我们知道我们可以结束迭代。
这样,除非访问,否则不会执行迭代器。