如何将任意长度的列表拆分为大小相等的块?


请参阅如果数据结果将直接用于循环,并且不需要存储,则如何以块形式遍历列表。

对于字符串输入的同一问题,请参见每n个字符拆分字符串?。相同的技术通常适用,但也有一些变化。


当前回答

任何可迭代的通用分块器,使用户可以选择如何在结尾处处理部分分块。

在Python 3上测试。

分块.py

from enum import Enum

class PartialChunkOptions(Enum):
    INCLUDE = 0
    EXCLUDE = 1
    PAD = 2
    ERROR = 3

class PartialChunkException(Exception):
    pass

def chunker(iterable, n, on_partial=PartialChunkOptions.INCLUDE, pad=None):
    """
    A chunker yielding n-element lists from an iterable, with various options
    about what to do about a partial chunk at the end.

    on_partial=PartialChunkOptions.INCLUDE (the default):
                     include the partial chunk as a short (<n) element list

    on_partial=PartialChunkOptions.EXCLUDE
                     do not include the partial chunk

    on_partial=PartialChunkOptions.PAD
                     pad to an n-element list 
                     (also pass pad=<pad_value>, default None)

    on_partial=PartialChunkOptions.ERROR
                     raise a RuntimeError if a partial chunk is encountered
    """

    on_partial = PartialChunkOptions(on_partial)        

    iterator = iter(iterable)
    while True:
        vals = []
        for i in range(n):
            try:
                vals.append(next(iterator))
            except StopIteration:
                if vals:
                    if on_partial == PartialChunkOptions.INCLUDE:
                        yield vals
                    elif on_partial == PartialChunkOptions.EXCLUDE:
                        pass
                    elif on_partial == PartialChunkOptions.PAD:
                        yield vals + [pad] * (n - len(vals))
                    elif on_partial == PartialChunkOptions.ERROR:
                        raise PartialChunkException
                    return
                return
        yield vals

测试.py

import chunker

chunk_size = 3

for it in (range(100, 107),
          range(100, 109)):

    print("\nITERABLE TO CHUNK: {}".format(it))
    print("CHUNK SIZE: {}".format(chunk_size))

    for option in chunker.PartialChunkOptions.__members__.values():
        print("\noption {} used".format(option))
        try:
            for chunk in chunker.chunker(it, chunk_size, on_partial=option):
                print(chunk)
        except chunker.PartialChunkException:
            print("PartialChunkException was raised")
    print("")

test.py的输出


ITERABLE TO CHUNK: range(100, 107)
CHUNK SIZE: 3

option PartialChunkOptions.INCLUDE used
[100, 101, 102]
[103, 104, 105]
[106]

option PartialChunkOptions.EXCLUDE used
[100, 101, 102]
[103, 104, 105]

option PartialChunkOptions.PAD used
[100, 101, 102]
[103, 104, 105]
[106, None, None]

option PartialChunkOptions.ERROR used
[100, 101, 102]
[103, 104, 105]
PartialChunkException was raised


ITERABLE TO CHUNK: range(100, 109)
CHUNK SIZE: 3

option PartialChunkOptions.INCLUDE used
[100, 101, 102]
[103, 104, 105]
[106, 107, 108]

option PartialChunkOptions.EXCLUDE used
[100, 101, 102]
[103, 104, 105]
[106, 107, 108]

option PartialChunkOptions.PAD used
[100, 101, 102]
[103, 104, 105]
[106, 107, 108]

option PartialChunkOptions.ERROR used
[100, 101, 102]
[103, 104, 105]
[106, 107, 108]

其他回答

这里有一个使用itertools.groupby的想法:

def chunks(l, n):
    c = itertools.count()
    return (it for _, it in itertools.groupby(l, lambda x: next(c)//n))

这将返回一个生成器。如果需要列表列表,只需将最后一行替换为

    return [list(it) for _, it in itertools.groupby(l, lambda x: next(c)//n)]

返回列表列表示例:

>>> chunks('abcdefghij', 4)
[['a', 'b', 'c', 'd'], ['e', 'f', 'g', 'h'], ['i', 'j']]

(因此,是的,这会受到“矮子问题”的影响,在特定情况下,这可能是问题,也可能不是问题。)

我在不创建temorary列表对象的情况下提出了以下解决方案,该对象可以与任何可迭代对象一起使用。请注意,此版本适用于Python 2.x:

def chunked(iterable, size):
    stop = []
    it = iter(iterable)
    def _next_chunk():
        try:
            for _ in xrange(size):
                yield next(it)
        except StopIteration:
            stop.append(True)
            return

    while not stop:
        yield _next_chunk()

for it in chunked(xrange(16), 4):
   print list(it)

输出:

[0, 1, 2, 3]
[4, 5, 6, 7]
[8, 9, 10, 11]
[12, 13, 14, 15] 
[]

正如您所看到的,如果len(可迭代)%size==0,那么我们有额外的空迭代器对象。但我不认为这是个大问题。

使用Python 3.8中的赋值表达式,它变得非常好:

import itertools

def batch(iterable, size):
    it = iter(iterable)
    while item := list(itertools.islice(it, size)):
        yield item

这适用于任意可迭代的对象,而不仅仅是列表。

>>> import pprint
>>> pprint.pprint(list(batch(range(75), 10)))
[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
 [10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
 [20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
 [30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
 [40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
 [50, 51, 52, 53, 54, 55, 56, 57, 58, 59],
 [60, 61, 62, 63, 64, 65, 66, 67, 68, 69],
 [70, 71, 72, 73, 74]]

更新

从Python 3.12开始,这个精确的实现可以作为itertools.batch获得

一个简单的解决方案

OP已请求“相等大小的块”。我将“等尺寸”理解为“平衡”尺寸:如果尺寸不可能相等(例如,23/5),我们正在寻找尺寸大致相同的物品组。

这里的输入是:

项目列表:input_list(例如,23个数字的列表)要拆分这些项目的组数:n个组(例如5个)

输入:

input_list = list(range(23))
n_groups = 5

连续元素组:

approx_sizes = len(input_list)/n_groups 

groups_cont = [input_list[int(i*approx_sizes):int((i+1)*approx_sizes)] 
               for i in range(n_groups)]

“每N个”元素组:

groups_leap = [input_list[i::n_groups] 
               for i in range(n_groups)]

后果

print(len(input_list))

print('Contiguous elements lists:')
print(groups_cont)

print('Leap every "N" items lists:')
print(groups_leap)

将输出:23连续元素列表:[[0, 1, 2, 3], [4, 5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16, 17], [18, 19, 20, 21, 22]]跳过每“N”个项目列表:[[0, 5, 10, 15, 20], [1, 6, 11, 16, 21], [2, 7, 12, 17, 22], [3, 8, 13, 18], [4, 9, 14, 19]]

参见本参考

>>> orange = range(1, 1001)
>>> otuples = list( zip(*[iter(orange)]*10))
>>> print(otuples)
[(1, 2, 3, 4, 5, 6, 7, 8, 9, 10), ... (991, 992, 993, 994, 995, 996, 997, 998, 999, 1000)]
>>> olist = [list(i) for i in otuples]
>>> print(olist)
[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10], ..., [991, 992, 993, 994, 995, 996, 997, 998, 999, 1000]]
>>> 

蟒蛇3