如何将任意长度的列表拆分为大小相等的块?


请参阅如果数据结果将直接用于循环,并且不需要存储,则如何以块形式遍历列表。

对于字符串输入的同一问题,请参见每n个字符拆分字符串?。相同的技术通常适用,但也有一些变化。


当前回答

用户@tzot的解决方案zip_langest(*[iter(lst)]*n,fillvalue=padvalue)非常优雅,但如果lst的长度不能被n整除,它会填充最后一个子列表,以保持其长度与其他子列表的长度匹配。然而,如果这不可取,那么只需使用zip()生成类似的循环zip,并将lst的剩余元素(不能生成“完整”子列表)附加到输出即可。

输出示例为ABCDEFG,3->ABC DEF G。

单线版本(Python>=3.8):

list(map(list, zip(*[iter(lst)]*n))) + ([rest] if (rest:=lst[len(lst)//n*n : ]) else [])

A函数:

def chunkify(lst, chunk_size):
    nested = list(map(list, zip(*[iter(lst)]*chunk_size)))
    rest = lst[len(lst)//chunk_size*chunk_size: ]
    if rest:
        nested.append(rest)
    return nested

生成器(尽管每个批次都是一个元组):

def chunkify(lst, chunk_size):
    for tup in zip(*[iter(lst)]*chunk_size):
        yield tup
    rest = tuple(lst[len(lst)//chunk_size*chunk_size: ])
    if rest:
        yield rest

它比这里的一些最流行的答案产生相同的输出更快。

my_list, n = list(range(1_000_000)), 12

%timeit list(chunks(my_list, n))                                         # @Ned_Batchelder
# 36.4 ms ± 1.6 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

%timeit [my_list[i:i+n] for i in range(0, len(my_list), n)]              # @Ned_Batchelder
# 34.6 ms ± 1.12 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

%timeit it = iter(my_list); list(iter(lambda: list(islice(it, n)), []))  # @senderle
# 60.6 ms ± 5.36 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

%timeit list(mit.chunked(my_list, n))                                    # @pylang
# 59.4 ms ± 4.92 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

%timeit chunkify(my_list, n)
# 25.8 ms ± 1.84 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

同样,从Python 3.12开始,这个功能将作为itertools模块中的批处理方法来实现(目前是一个配方),因此这个答案很可能会被Python 3.12淘汰。

其他回答

代码:

def split_list(the_list, chunk_size):
    result_list = []
    while the_list:
        result_list.append(the_list[:chunk_size])
        the_list = the_list[chunk_size:]
    return result_list

a_list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

print split_list(a_list, 3)

结果:

[[1, 2, 3], [4, 5, 6], [7, 8, 9], [10]]
def chunks(iterable,n):
    """assumes n is an integer>0
    """
    iterable=iter(iterable)
    while True:
        result=[]
        for i in range(n):
            try:
                a=next(iterable)
            except StopIteration:
                break
            else:
                result.append(a)
        if result:
            yield result
        else:
            break

g1=(i*i for i in range(10))
g2=chunks(g1,3)
print g2
'<generator object chunks at 0x0337B9B8>'
print list(g2)
'[[0, 1, 4], [9, 16, 25], [36, 49, 64], [81]]'

不要重新发明轮子。

更新:即将发布的Python 3.12引入了itertools.batch,最终解决了这个问题。见下文。

鉴于

import itertools as it
import collections as ct

import more_itertools as mit


iterable = range(11)
n = 3

Code

itertools.batch++

list(it.batched(iterable, n))
# [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10]]

更多工具+

list(mit.chunked(iterable, n))
# [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10]]

list(mit.sliced(iterable, n))
# [range(0, 3), range(3, 6), range(6, 9), range(9, 11)]

list(mit.grouper(n, iterable))
# [(0, 1, 2), (3, 4, 5), (6, 7, 8), (9, 10, None)]

list(mit.windowed(iterable, len(iterable)//n, step=n))
# [(0, 1, 2), (3, 4, 5), (6, 7, 8), (9, 10, None)]

list(mit.chunked_even(iterable, n))
# [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10]]

(或DIY,如果你愿意)

标准库

list(it.zip_longest(*[iter(iterable)] * n))
# [(0, 1, 2), (3, 4, 5), (6, 7, 8), (9, 10, None)]
d = {}
for i, x in enumerate(iterable):
    d.setdefault(i//n, []).append(x)
    

list(d.values())
# [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10]]
dd = ct.defaultdict(list)
for i, x in enumerate(iterable):
    dd[i//n].append(x)
    

list(dd.values())
# [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10]]

工具书类

more_itertools.chunked(相关已发布)更多intertools.slicedmore_itertools.grouper(相关文章)more_itertools.windowd(另请参见错开、zip_offset)更多intertools.chunked_evenzip_langest(相关帖子,相关帖子)setdefault(排序结果需要Python 3.6+)collections.defaultdict(排序结果需要Python 3.6+)

+第三方库,实现itertools配方等。>pip安装更多工具

++Python标准库3.12+中包含的.batched类似于more_itertools.chunked。

就像@AaronHall我来这里找的是大小大致均匀的大块。对此有不同的解释。在我的例子中,如果期望的大小是N,我希望每个组的大小>=N。因此,在上述大多数情况下产生的孤儿应重新分配给其他群体。

这可以通过以下方式完成:

def nChunks(l, n):
    """ Yield n successive chunks from l.
    Works for lists,  pandas dataframes, etc
    """
    newn = int(1.0 * len(l) / n + 0.5)
    for i in xrange(0, n-1):
        yield l[i*newn:i*newn+newn]
    yield l[n*newn-newn:]

(通过将列表拆分为N个长度大致相等的部分),只需将其称为nChunks(l,l/N)或nChunk(l,floor(l/N))

def chunk(lst):
    out = []
    for x in xrange(2, len(lst) + 1):
        if not len(lst) % x:
            factor = len(lst) / x
            break
    while lst:
        out.append([lst.pop(0) for x in xrange(factor)])
    return out