如何将任意长度的列表拆分为大小相等的块?


请参阅如果数据结果将直接用于循环,并且不需要存储,则如何以块形式遍历列表。

对于字符串输入的同一问题,请参见每n个字符拆分字符串?。相同的技术通常适用,但也有一些变化。


当前回答

我非常喜欢tzot和J.F.Sebastian提出的Python文档版本,但它有两个缺点:

它不是很明确我通常不希望在最后一个块中有填充值

我在代码中经常使用这个:

from itertools import islice

def chunks(n, iterable):
    iterable = iter(iterable)
    while True:
        yield tuple(islice(iterable, n)) or iterable.next()

更新:一个懒块版本:

from itertools import chain, islice

def chunks(n, iterable):
   iterable = iter(iterable)
   while True:
       yield chain([next(iterable)], islice(iterable, n-1))

其他回答

def split_seq(seq, num_pieces):
    start = 0
    for i in xrange(num_pieces):
        stop = start + len(seq[i::num_pieces])
        yield seq[start:stop]
        start = stop

用法:

seq = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

for seq in split_seq(seq, 3):
    print seq

任何可迭代的通用分块器,使用户可以选择如何在结尾处处理部分分块。

在Python 3上测试。

分块.py

from enum import Enum

class PartialChunkOptions(Enum):
    INCLUDE = 0
    EXCLUDE = 1
    PAD = 2
    ERROR = 3

class PartialChunkException(Exception):
    pass

def chunker(iterable, n, on_partial=PartialChunkOptions.INCLUDE, pad=None):
    """
    A chunker yielding n-element lists from an iterable, with various options
    about what to do about a partial chunk at the end.

    on_partial=PartialChunkOptions.INCLUDE (the default):
                     include the partial chunk as a short (<n) element list

    on_partial=PartialChunkOptions.EXCLUDE
                     do not include the partial chunk

    on_partial=PartialChunkOptions.PAD
                     pad to an n-element list 
                     (also pass pad=<pad_value>, default None)

    on_partial=PartialChunkOptions.ERROR
                     raise a RuntimeError if a partial chunk is encountered
    """

    on_partial = PartialChunkOptions(on_partial)        

    iterator = iter(iterable)
    while True:
        vals = []
        for i in range(n):
            try:
                vals.append(next(iterator))
            except StopIteration:
                if vals:
                    if on_partial == PartialChunkOptions.INCLUDE:
                        yield vals
                    elif on_partial == PartialChunkOptions.EXCLUDE:
                        pass
                    elif on_partial == PartialChunkOptions.PAD:
                        yield vals + [pad] * (n - len(vals))
                    elif on_partial == PartialChunkOptions.ERROR:
                        raise PartialChunkException
                    return
                return
        yield vals

测试.py

import chunker

chunk_size = 3

for it in (range(100, 107),
          range(100, 109)):

    print("\nITERABLE TO CHUNK: {}".format(it))
    print("CHUNK SIZE: {}".format(chunk_size))

    for option in chunker.PartialChunkOptions.__members__.values():
        print("\noption {} used".format(option))
        try:
            for chunk in chunker.chunker(it, chunk_size, on_partial=option):
                print(chunk)
        except chunker.PartialChunkException:
            print("PartialChunkException was raised")
    print("")

test.py的输出


ITERABLE TO CHUNK: range(100, 107)
CHUNK SIZE: 3

option PartialChunkOptions.INCLUDE used
[100, 101, 102]
[103, 104, 105]
[106]

option PartialChunkOptions.EXCLUDE used
[100, 101, 102]
[103, 104, 105]

option PartialChunkOptions.PAD used
[100, 101, 102]
[103, 104, 105]
[106, None, None]

option PartialChunkOptions.ERROR used
[100, 101, 102]
[103, 104, 105]
PartialChunkException was raised


ITERABLE TO CHUNK: range(100, 109)
CHUNK SIZE: 3

option PartialChunkOptions.INCLUDE used
[100, 101, 102]
[103, 104, 105]
[106, 107, 108]

option PartialChunkOptions.EXCLUDE used
[100, 101, 102]
[103, 104, 105]
[106, 107, 108]

option PartialChunkOptions.PAD used
[100, 101, 102]
[103, 104, 105]
[106, 107, 108]

option PartialChunkOptions.ERROR used
[100, 101, 102]
[103, 104, 105]
[106, 107, 108]

呵呵,单行版本

In [48]: chunk = lambda ulist, step:  map(lambda i: ulist[i:i+step],  xrange(0, len(ulist), step))

In [49]: chunk(range(1,100), 10)
Out[49]: 
[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
 [11, 12, 13, 14, 15, 16, 17, 18, 19, 20],
 [21, 22, 23, 24, 25, 26, 27, 28, 29, 30],
 [31, 32, 33, 34, 35, 36, 37, 38, 39, 40],
 [41, 42, 43, 44, 45, 46, 47, 48, 49, 50],
 [51, 52, 53, 54, 55, 56, 57, 58, 59, 60],
 [61, 62, 63, 64, 65, 66, 67, 68, 69, 70],
 [71, 72, 73, 74, 75, 76, 77, 78, 79, 80],
 [81, 82, 83, 84, 85, 86, 87, 88, 89, 90],
 [91, 92, 93, 94, 95, 96, 97, 98, 99]]

与任何可迭代的内部数据是生成器对象(不是列表)一个衬垫

In [259]: get_in_chunks = lambda itr,n: ( (v for _,v in g) for _,g in itertools.groupby(enumerate(itr),lambda (ind,_): ind/n))

In [260]: list(list(x) for x in get_in_chunks(range(30),7))
Out[260]:
[[0, 1, 2, 3, 4, 5, 6],
 [7, 8, 9, 10, 11, 12, 13],
 [14, 15, 16, 17, 18, 19, 20],
 [21, 22, 23, 24, 25, 26, 27],
 [28, 29]]

由于我必须这样做,下面是我的解决方案,给出了一个生成器和一个批量大小:

def pop_n_elems_from_generator(g, n):
    elems = []
    try:
        for idx in xrange(0, n):
            elems.append(g.next())
        return elems
    except StopIteration:
        return elems