如何将任意长度的列表拆分为大小相等的块?


请参阅如果数据结果将直接用于循环,并且不需要存储,则如何以块形式遍历列表。

对于字符串输入的同一问题,请参见每n个字符拆分字符串?。相同的技术通常适用,但也有一些变化。


当前回答

使用列表综合:

l = [1,2,3,4,5,6,7,8,9,10,11,12]
k = 5 #chunk size
print [tuple(l[x:y]) for (x, y) in [(x, x+k) for x in range(0, len(l), k)]]

其他回答

上面的答案(由koffein给出)有一个小问题:列表总是被分割成相等数量的分割,而不是每个分区的项目数相等。这是我的版本。“//chs+1”考虑到项目的数量可能不能完全除以分区大小,因此最后一个分区将仅被部分填充。

# Given 'l' is your list

chs = 12 # Your chunksize
partitioned = [ l[i*chs:(i*chs)+chs] for i in range((len(l) // chs)+1) ]

抽象将是

l = [1,2,3,4,5,6,7,8,9]
n = 3
outList = []
for i in range(n, len(l) + n, n):
    outList.append(l[i-n:i])

print(outList)

这将打印:

[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

我不喜欢按块大小拆分元素的想法,例如,脚本可以将101到3个块划分为[50,50,1]。为了我的需要,我需要按比例分配,保持秩序不变。首先我写了自己的剧本,效果很好,而且很简单。但我后来看到了这个答案,剧本比我的好,我想是这样的。这是我的脚本:

def proportional_dividing(N, n):
    """
    N - length of array (bigger number)
    n - number of chunks (smaller number)
    output - arr, containing N numbers, diveded roundly to n chunks
    """
    arr = []
    if N == 0:
        return arr
    elif n == 0:
        arr.append(N)
        return arr
    r = N // n
    for i in range(n-1):
        arr.append(r)
    arr.append(N-r*(n-1))

    last_n = arr[-1]
    # last number always will be r <= last_n < 2*r
    # when last_n == r it's ok, but when last_n > r ...
    if last_n > r:
        # ... and if difference too big (bigger than 1), then
        if abs(r-last_n) > 1:
            #[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 7] # N=29, n=12
            # we need to give unnecessary numbers to first elements back
            diff = last_n - r
            for k in range(diff):
                arr[k] += 1
            arr[-1] = r
            # and we receive [3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2]
    return arr

def split_items(items, chunks):
    arr = proportional_dividing(len(items), chunks)
    splitted = []
    for chunk_size in arr:
        splitted.append(items[:chunk_size])
        items = items[chunk_size:]
    print(splitted)
    return splitted

items = [1,2,3,4,5,6,7,8,9,10,11]
chunks = 3
split_items(items, chunks)
split_items(['a','b','c','d','e','f','g','h','i','g','k','l', 'm'], 3)
split_items(['a','b','c','d','e','f','g','h','i','g','k','l', 'm', 'n'], 3)
split_items(range(100), 4)
split_items(range(99), 4)
split_items(range(101), 4)

和输出:

[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11]]
[['a', 'b', 'c', 'd'], ['e', 'f', 'g', 'h'], ['i', 'g', 'k', 'l', 'm']]
[['a', 'b', 'c', 'd', 'e'], ['f', 'g', 'h', 'i', 'g'], ['k', 'l', 'm', 'n']]
[range(0, 25), range(25, 50), range(50, 75), range(75, 100)]
[range(0, 25), range(25, 50), range(50, 75), range(75, 99)]
[range(0, 25), range(25, 50), range(50, 75), range(75, 101)]

用户@tzot的解决方案zip_langest(*[iter(lst)]*n,fillvalue=padvalue)非常优雅,但如果lst的长度不能被n整除,它会填充最后一个子列表,以保持其长度与其他子列表的长度匹配。然而,如果这不可取,那么只需使用zip()生成类似的循环zip,并将lst的剩余元素(不能生成“完整”子列表)附加到输出即可。

输出示例为ABCDEFG,3->ABC DEF G。

单线版本(Python>=3.8):

list(map(list, zip(*[iter(lst)]*n))) + ([rest] if (rest:=lst[len(lst)//n*n : ]) else [])

A函数:

def chunkify(lst, chunk_size):
    nested = list(map(list, zip(*[iter(lst)]*chunk_size)))
    rest = lst[len(lst)//chunk_size*chunk_size: ]
    if rest:
        nested.append(rest)
    return nested

生成器(尽管每个批次都是一个元组):

def chunkify(lst, chunk_size):
    for tup in zip(*[iter(lst)]*chunk_size):
        yield tup
    rest = tuple(lst[len(lst)//chunk_size*chunk_size: ])
    if rest:
        yield rest

它比这里的一些最流行的答案产生相同的输出更快。

my_list, n = list(range(1_000_000)), 12

%timeit list(chunks(my_list, n))                                         # @Ned_Batchelder
# 36.4 ms ± 1.6 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

%timeit [my_list[i:i+n] for i in range(0, len(my_list), n)]              # @Ned_Batchelder
# 34.6 ms ± 1.12 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

%timeit it = iter(my_list); list(iter(lambda: list(islice(it, n)), []))  # @senderle
# 60.6 ms ± 5.36 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

%timeit list(mit.chunked(my_list, n))                                    # @pylang
# 59.4 ms ± 4.92 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

%timeit chunkify(my_list, n)
# 25.8 ms ± 1.84 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

同样,从Python 3.12开始,这个功能将作为itertools模块中的批处理方法来实现(目前是一个配方),因此这个答案很可能会被Python 3.12淘汰。

我很好奇不同方法的性能,这里是:

在Python 3.5.1上测试

import time
batch_size = 7
arr_len = 298937

#---------slice-------------

print("\r\nslice")
start = time.time()
arr = [i for i in range(0, arr_len)]
while True:
    if not arr:
        break

    tmp = arr[0:batch_size]
    arr = arr[batch_size:-1]
print(time.time() - start)

#-----------index-----------

print("\r\nindex")
arr = [i for i in range(0, arr_len)]
start = time.time()
for i in range(0, round(len(arr) / batch_size + 1)):
    tmp = arr[batch_size * i : batch_size * (i + 1)]
print(time.time() - start)

#----------batches 1------------

def batch(iterable, n=1):
    l = len(iterable)
    for ndx in range(0, l, n):
        yield iterable[ndx:min(ndx + n, l)]

print("\r\nbatches 1")
arr = [i for i in range(0, arr_len)]
start = time.time()
for x in batch(arr, batch_size):
    tmp = x
print(time.time() - start)

#----------batches 2------------

from itertools import islice, chain

def batch(iterable, size):
    sourceiter = iter(iterable)
    while True:
        batchiter = islice(sourceiter, size)
        yield chain([next(batchiter)], batchiter)


print("\r\nbatches 2")
arr = [i for i in range(0, arr_len)]
start = time.time()
for x in batch(arr, batch_size):
    tmp = x
print(time.time() - start)

#---------chunks-------------
def chunks(l, n):
    """Yield successive n-sized chunks from l."""
    for i in range(0, len(l), n):
        yield l[i:i + n]
print("\r\nchunks")
arr = [i for i in range(0, arr_len)]
start = time.time()
for x in chunks(arr, batch_size):
    tmp = x
print(time.time() - start)

#-----------grouper-----------

from itertools import zip_longest # for Python 3.x
#from six.moves import zip_longest # for both (uses the six compat library)

def grouper(iterable, n, padvalue=None):
    "grouper(3, 'abcdefg', 'x') --> ('a','b','c'), ('d','e','f'), ('g','x','x')"
    return zip_longest(*[iter(iterable)]*n, fillvalue=padvalue)

arr = [i for i in range(0, arr_len)]
print("\r\ngrouper")
start = time.time()
for x in grouper(arr, batch_size):
    tmp = x
print(time.time() - start)

结果:

slice
31.18285083770752

index
0.02184295654296875

batches 1
0.03503894805908203

batches 2
0.22681021690368652

chunks
0.019841909408569336

grouper
0.006506919860839844