如何将任意长度的列表拆分为大小相等的块?
请参阅如果数据结果将直接用于循环,并且不需要存储,则如何以块形式遍历列表。
对于字符串输入的同一问题,请参见每n个字符拆分字符串?。相同的技术通常适用,但也有一些变化。
如何将任意长度的列表拆分为大小相等的块?
请参阅如果数据结果将直接用于循环,并且不需要存储,则如何以块形式遍历列表。
对于字符串输入的同一问题,请参见每n个字符拆分字符串?。相同的技术通常适用,但也有一些变化。
当前回答
这适用于v2/v3,可内联,基于生成器,仅使用标准库:
import itertools
def split_groups(iter_in, group_size):
return ((x for _, x in item) for _, item in itertools.groupby(enumerate(iter_in), key=lambda x: x[0] // group_size))
其他回答
def chunks(iterable,n):
"""assumes n is an integer>0
"""
iterable=iter(iterable)
while True:
result=[]
for i in range(n):
try:
a=next(iterable)
except StopIteration:
break
else:
result.append(a)
if result:
yield result
else:
break
g1=(i*i for i in range(10))
g2=chunks(g1,3)
print g2
'<generator object chunks at 0x0337B9B8>'
print list(g2)
'[[0, 1, 4], [9, 16, 25], [36, 49, 64], [81]]'
就像@AaronHall我来这里找的是大小大致均匀的大块。对此有不同的解释。在我的例子中,如果期望的大小是N,我希望每个组的大小>=N。因此,在上述大多数情况下产生的孤儿应重新分配给其他群体。
这可以通过以下方式完成:
def nChunks(l, n):
""" Yield n successive chunks from l.
Works for lists, pandas dataframes, etc
"""
newn = int(1.0 * len(l) / n + 0.5)
for i in xrange(0, n-1):
yield l[i*newn:i*newn+newn]
yield l[n*newn-newn:]
(通过将列表拆分为N个长度大致相等的部分),只需将其称为nChunks(l,l/N)或nChunk(l,floor(l/N))
a = [1, 2, 3, 4, 5, 6, 7, 8, 9]
CHUNK = 4
[a[i*CHUNK:(i+1)*CHUNK] for i in xrange((len(a) + CHUNK - 1) / CHUNK )]
下面我有一个解决方案确实有效,但比这个解决方案更重要的是对其他方法的一些评论。首先,一个好的解决方案不应该要求一个循环按顺序遍历子迭代器。如果我跑
g = paged_iter(list(range(50)), 11))
i0 = next(g)
i1 = next(g)
list(i1)
list(i0)
最后一个命令的适当输出是
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
not
[]
正如这里大多数基于itertools的解决方案所返回的那样。这不仅仅是关于按顺序访问迭代器的常见无聊限制。想象一个消费者试图清理输入不良的数据,该数据颠倒了5的块的适当顺序,即数据看起来像[B5,A5,D5,C5],应该像[A5,B5,C5,D5](其中A5只是五个元素,而不是子列表)。该使用者将查看分组函数的声明行为,并毫不犹豫地编写一个类似
i = 0
out = []
for it in paged_iter(data,5)
if (i % 2 == 0):
swapped = it
else:
out += list(it)
out += list(swapped)
i = i + 1
如果您偷偷摸摸地假设子迭代器总是按顺序完全使用,那么这将产生神秘的错误结果。如果你想交错块中的元素,情况就更糟了。
其次,大量建议的解决方案隐含地依赖于迭代器具有确定性顺序的事实(例如,迭代器没有设置),尽管使用islice的一些解决方案可能还可以,但我对此感到担忧。
第三,itertools-grouper方法有效,但该方法依赖于zip_langest(或zip)函数的内部行为,而这些行为不是其发布行为的一部分。特别是,grouper函数只起作用,因为在zip_langest(i0…In)中,下一个函数总是按next(i0)、next(i 1)、……的顺序调用。。。在重新开始之前。当grouper传递同一迭代器对象的n个副本时,它依赖于此行为。
最后,虽然下面的解决方案可以得到改进,但如果您对上面的假设进行了批评,即子迭代器是按顺序访问的,并且在没有这个假设的情况下被完全阅读,则必须隐式(通过调用链)或显式(通过deques或其他数据结构)为每个子迭代程序存储元素。所以,不要浪费时间(就像我所做的那样),假设人们可以用一些巧妙的技巧来解决这个问题。
def paged_iter(iterat, n):
itr = iter(iterat)
deq = None
try:
while(True):
deq = collections.deque(maxlen=n)
for q in range(n):
deq.append(next(itr))
yield (i for i in deq)
except StopIteration:
yield (i for i in deq)
这适用于v2/v3,可内联,基于生成器,仅使用标准库:
import itertools
def split_groups(iter_in, group_size):
return ((x for _, x in item) for _, item in itertools.groupby(enumerate(iter_in), key=lambda x: x[0] // group_size))