如何将任意长度的列表拆分为大小相等的块?
请参阅如果数据结果将直接用于循环,并且不需要存储,则如何以块形式遍历列表。
对于字符串输入的同一问题,请参见每n个字符拆分字符串?。相同的技术通常适用,但也有一些变化。
如何将任意长度的列表拆分为大小相等的块?
请参阅如果数据结果将直接用于循环,并且不需要存储,则如何以块形式遍历列表。
对于字符串输入的同一问题,请参见每n个字符拆分字符串?。相同的技术通常适用,但也有一些变化。
当前回答
a = [1, 2, 3, 4, 5, 6, 7, 8, 9]
CHUNK = 4
[a[i*CHUNK:(i+1)*CHUNK] for i in xrange((len(a) + CHUNK - 1) / CHUNK )]
其他回答
我非常喜欢tzot和J.F.Sebastian提出的Python文档版本,但它有两个缺点:
它不是很明确我通常不希望在最后一个块中有填充值
我在代码中经常使用这个:
from itertools import islice
def chunks(n, iterable):
iterable = iter(iterable)
while True:
yield tuple(islice(iterable, n)) or iterable.next()
更新:一个懒块版本:
from itertools import chain, islice
def chunks(n, iterable):
iterable = iter(iterable)
while True:
yield chain([next(iterable)], islice(iterable, n-1))
任何可迭代的通用分块器,使用户可以选择如何在结尾处处理部分分块。
在Python 3上测试。
分块.py
from enum import Enum
class PartialChunkOptions(Enum):
INCLUDE = 0
EXCLUDE = 1
PAD = 2
ERROR = 3
class PartialChunkException(Exception):
pass
def chunker(iterable, n, on_partial=PartialChunkOptions.INCLUDE, pad=None):
"""
A chunker yielding n-element lists from an iterable, with various options
about what to do about a partial chunk at the end.
on_partial=PartialChunkOptions.INCLUDE (the default):
include the partial chunk as a short (<n) element list
on_partial=PartialChunkOptions.EXCLUDE
do not include the partial chunk
on_partial=PartialChunkOptions.PAD
pad to an n-element list
(also pass pad=<pad_value>, default None)
on_partial=PartialChunkOptions.ERROR
raise a RuntimeError if a partial chunk is encountered
"""
on_partial = PartialChunkOptions(on_partial)
iterator = iter(iterable)
while True:
vals = []
for i in range(n):
try:
vals.append(next(iterator))
except StopIteration:
if vals:
if on_partial == PartialChunkOptions.INCLUDE:
yield vals
elif on_partial == PartialChunkOptions.EXCLUDE:
pass
elif on_partial == PartialChunkOptions.PAD:
yield vals + [pad] * (n - len(vals))
elif on_partial == PartialChunkOptions.ERROR:
raise PartialChunkException
return
return
yield vals
测试.py
import chunker
chunk_size = 3
for it in (range(100, 107),
range(100, 109)):
print("\nITERABLE TO CHUNK: {}".format(it))
print("CHUNK SIZE: {}".format(chunk_size))
for option in chunker.PartialChunkOptions.__members__.values():
print("\noption {} used".format(option))
try:
for chunk in chunker.chunker(it, chunk_size, on_partial=option):
print(chunk)
except chunker.PartialChunkException:
print("PartialChunkException was raised")
print("")
test.py的输出
ITERABLE TO CHUNK: range(100, 107)
CHUNK SIZE: 3
option PartialChunkOptions.INCLUDE used
[100, 101, 102]
[103, 104, 105]
[106]
option PartialChunkOptions.EXCLUDE used
[100, 101, 102]
[103, 104, 105]
option PartialChunkOptions.PAD used
[100, 101, 102]
[103, 104, 105]
[106, None, None]
option PartialChunkOptions.ERROR used
[100, 101, 102]
[103, 104, 105]
PartialChunkException was raised
ITERABLE TO CHUNK: range(100, 109)
CHUNK SIZE: 3
option PartialChunkOptions.INCLUDE used
[100, 101, 102]
[103, 104, 105]
[106, 107, 108]
option PartialChunkOptions.EXCLUDE used
[100, 101, 102]
[103, 104, 105]
[106, 107, 108]
option PartialChunkOptions.PAD used
[100, 101, 102]
[103, 104, 105]
[106, 107, 108]
option PartialChunkOptions.ERROR used
[100, 101, 102]
[103, 104, 105]
[106, 107, 108]
下面我有一个解决方案确实有效,但比这个解决方案更重要的是对其他方法的一些评论。首先,一个好的解决方案不应该要求一个循环按顺序遍历子迭代器。如果我跑
g = paged_iter(list(range(50)), 11))
i0 = next(g)
i1 = next(g)
list(i1)
list(i0)
最后一个命令的适当输出是
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
not
[]
正如这里大多数基于itertools的解决方案所返回的那样。这不仅仅是关于按顺序访问迭代器的常见无聊限制。想象一个消费者试图清理输入不良的数据,该数据颠倒了5的块的适当顺序,即数据看起来像[B5,A5,D5,C5],应该像[A5,B5,C5,D5](其中A5只是五个元素,而不是子列表)。该使用者将查看分组函数的声明行为,并毫不犹豫地编写一个类似
i = 0
out = []
for it in paged_iter(data,5)
if (i % 2 == 0):
swapped = it
else:
out += list(it)
out += list(swapped)
i = i + 1
如果您偷偷摸摸地假设子迭代器总是按顺序完全使用,那么这将产生神秘的错误结果。如果你想交错块中的元素,情况就更糟了。
其次,大量建议的解决方案隐含地依赖于迭代器具有确定性顺序的事实(例如,迭代器没有设置),尽管使用islice的一些解决方案可能还可以,但我对此感到担忧。
第三,itertools-grouper方法有效,但该方法依赖于zip_langest(或zip)函数的内部行为,而这些行为不是其发布行为的一部分。特别是,grouper函数只起作用,因为在zip_langest(i0…In)中,下一个函数总是按next(i0)、next(i 1)、……的顺序调用。。。在重新开始之前。当grouper传递同一迭代器对象的n个副本时,它依赖于此行为。
最后,虽然下面的解决方案可以得到改进,但如果您对上面的假设进行了批评,即子迭代器是按顺序访问的,并且在没有这个假设的情况下被完全阅读,则必须隐式(通过调用链)或显式(通过deques或其他数据结构)为每个子迭代程序存储元素。所以,不要浪费时间(就像我所做的那样),假设人们可以用一些巧妙的技巧来解决这个问题。
def paged_iter(iterat, n):
itr = iter(iterat)
deq = None
try:
while(True):
deq = collections.deque(maxlen=n)
for q in range(n):
deq.append(next(itr))
yield (i for i in deq)
except StopIteration:
yield (i for i in deq)
这是一个生成大小均匀的块的生成器:
def chunks(lst, n):
"""Yield successive n-sized chunks from lst."""
for i in range(0, len(lst), n):
yield lst[i:i + n]
import pprint
pprint.pprint(list(chunks(range(10, 75), 10)))
[[10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
[20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
[30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
[40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
[50, 51, 52, 53, 54, 55, 56, 57, 58, 59],
[60, 61, 62, 63, 64, 65, 66, 67, 68, 69],
[70, 71, 72, 73, 74]]
对于Python 2,使用xrange代替range:
def chunks(lst, n):
"""Yield successive n-sized chunks from lst."""
for i in xrange(0, len(lst), n):
yield lst[i:i + n]
下面是一行理解列表。不过,上面的方法更可取,因为使用命名函数使代码更容易理解。对于Python 3:
[lst[i:i + n] for i in range(0, len(lst), n)]
对于Python 2:
[lst[i:i + n] for i in xrange(0, len(lst), n)]
您可以使用更多的intertools.chunked_甚至与math.eil一起使用。这可能是最容易理解的吗?
from math import ceil
import more_itertools as mit
from pprint import pprint
pprint([*mit.chunked_even(range(19), ceil(19 / 5))])
# [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15], [16, 17, 18]]
pprint([*mit.chunked_even(range(20), ceil(20 / 5))])
# [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15], [16, 17, 18, 19]]
pprint([*mit.chunked_even(range(21), ceil(21 / 5))])
# [[0, 1, 2, 3, 4],
# [5, 6, 7, 8],
# [9, 10, 11, 12],
# [13, 14, 15, 16],
# [17, 18, 19, 20]]
pprint([*mit.chunked_even(range(3), ceil(3 / 5))])
# [[0], [1], [2]]