如何将任意长度的列表拆分为大小相等的块?
请参阅如果数据结果将直接用于循环,并且不需要存储,则如何以块形式遍历列表。
对于字符串输入的同一问题,请参见每n个字符拆分字符串?。相同的技术通常适用,但也有一些变化。
如何将任意长度的列表拆分为大小相等的块?
请参阅如果数据结果将直接用于循环,并且不需要存储,则如何以块形式遍历列表。
对于字符串输入的同一问题,请参见每n个字符拆分字符串?。相同的技术通常适用,但也有一些变化。
当前回答
下面我有一个解决方案确实有效,但比这个解决方案更重要的是对其他方法的一些评论。首先,一个好的解决方案不应该要求一个循环按顺序遍历子迭代器。如果我跑
g = paged_iter(list(range(50)), 11))
i0 = next(g)
i1 = next(g)
list(i1)
list(i0)
最后一个命令的适当输出是
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
not
[]
正如这里大多数基于itertools的解决方案所返回的那样。这不仅仅是关于按顺序访问迭代器的常见无聊限制。想象一个消费者试图清理输入不良的数据,该数据颠倒了5的块的适当顺序,即数据看起来像[B5,A5,D5,C5],应该像[A5,B5,C5,D5](其中A5只是五个元素,而不是子列表)。该使用者将查看分组函数的声明行为,并毫不犹豫地编写一个类似
i = 0
out = []
for it in paged_iter(data,5)
if (i % 2 == 0):
swapped = it
else:
out += list(it)
out += list(swapped)
i = i + 1
如果您偷偷摸摸地假设子迭代器总是按顺序完全使用,那么这将产生神秘的错误结果。如果你想交错块中的元素,情况就更糟了。
其次,大量建议的解决方案隐含地依赖于迭代器具有确定性顺序的事实(例如,迭代器没有设置),尽管使用islice的一些解决方案可能还可以,但我对此感到担忧。
第三,itertools-grouper方法有效,但该方法依赖于zip_langest(或zip)函数的内部行为,而这些行为不是其发布行为的一部分。特别是,grouper函数只起作用,因为在zip_langest(i0…In)中,下一个函数总是按next(i0)、next(i 1)、……的顺序调用。。。在重新开始之前。当grouper传递同一迭代器对象的n个副本时,它依赖于此行为。
最后,虽然下面的解决方案可以得到改进,但如果您对上面的假设进行了批评,即子迭代器是按顺序访问的,并且在没有这个假设的情况下被完全阅读,则必须隐式(通过调用链)或显式(通过deques或其他数据结构)为每个子迭代程序存储元素。所以,不要浪费时间(就像我所做的那样),假设人们可以用一些巧妙的技巧来解决这个问题。
def paged_iter(iterat, n):
itr = iter(iterat)
deq = None
try:
while(True):
deq = collections.deque(maxlen=n)
for q in range(n):
deq.append(next(itr))
yield (i for i in deq)
except StopIteration:
yield (i for i in deq)
其他回答
>>> def f(x, n, acc=[]): return f(x[n:], n, acc+[(x[:n])]) if x else acc
>>> f("Hallo Welt", 3)
['Hal', 'lo ', 'Wel', 't']
>>>
如果你在括号里-我拿起了一本关于Erlang的书:)
假设列表是第一个
import math
# length of the list len(lst) is ln
# size of a chunk is size
for num in range ( math.ceil(ln/size) ):
start, end = num*size, min((num+1)*size, ln)
print(lst[start:end])
例如,如果块大小为3,则可以执行以下操作:
zip(*[iterable[i::3] for i in range(3)])
来源:http://code.activestate.com/recipes/303060-group-a-list-into-sequential-n-tuples/
当我的区块大小是固定的数字时,我会使用这个,我可以键入,例如“3”,并且永远不会改变。
我很惊讶没有人想到使用iter的双参数形式:
from itertools import islice
def chunk(it, size):
it = iter(it)
return iter(lambda: tuple(islice(it, size)), ())
演示:
>>> list(chunk(range(14), 3))
[(0, 1, 2), (3, 4, 5), (6, 7, 8), (9, 10, 11), (12, 13)]
这适用于任何可迭代的对象,并延迟生成输出。它返回元组而不是迭代器,但我认为它还是有一定的优雅。它也不会垫;如果您需要填充,上面的一个简单变体就足够了:
from itertools import islice, chain, repeat
def chunk_pad(it, size, padval=None):
it = chain(iter(it), repeat(padval))
return iter(lambda: tuple(islice(it, size)), (padval,) * size)
演示:
>>> list(chunk_pad(range(14), 3))
[(0, 1, 2), (3, 4, 5), (6, 7, 8), (9, 10, 11), (12, 13, None)]
>>> list(chunk_pad(range(14), 3, 'a'))
[(0, 1, 2), (3, 4, 5), (6, 7, 8), (9, 10, 11), (12, 13, 'a')]
与基于izip_longest的解决方案一样,上面的解决方案也始终适用。据我所知,对于可选pad的函数,没有单行或双线itertools配方。通过结合以上两种方法,这一方法非常接近:
_no_padding = object()
def chunk(it, size, padval=_no_padding):
if padval == _no_padding:
it = iter(it)
sentinel = ()
else:
it = chain(iter(it), repeat(padval))
sentinel = (padval,) * size
return iter(lambda: tuple(islice(it, size)), sentinel)
演示:
>>> list(chunk(range(14), 3))
[(0, 1, 2), (3, 4, 5), (6, 7, 8), (9, 10, 11), (12, 13)]
>>> list(chunk(range(14), 3, None))
[(0, 1, 2), (3, 4, 5), (6, 7, 8), (9, 10, 11), (12, 13, None)]
>>> list(chunk(range(14), 3, 'a'))
[(0, 1, 2), (3, 4, 5), (6, 7, 8), (9, 10, 11), (12, 13, 'a')]
我相信这是提议的提供可选填充的最短的分块器。
正如Tomasz Gandor所观察到的,如果两个填充块遇到一长串填充值,它们会意外停止。以下是以合理方式解决该问题的最后一个变体:
_no_padding = object()
def chunk(it, size, padval=_no_padding):
it = iter(it)
chunker = iter(lambda: tuple(islice(it, size)), ())
if padval == _no_padding:
yield from chunker
else:
for ch in chunker:
yield ch if len(ch) == size else ch + (padval,) * (size - len(ch))
演示:
>>> list(chunk([1, 2, (), (), 5], 2))
[(1, 2), ((), ()), (5,)]
>>> list(chunk([1, 2, None, None, 5], 2, None))
[(1, 2), (None, None), (5, None)]
这是一个生成大小均匀的块的生成器:
def chunks(lst, n):
"""Yield successive n-sized chunks from lst."""
for i in range(0, len(lst), n):
yield lst[i:i + n]
import pprint
pprint.pprint(list(chunks(range(10, 75), 10)))
[[10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
[20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
[30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
[40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
[50, 51, 52, 53, 54, 55, 56, 57, 58, 59],
[60, 61, 62, 63, 64, 65, 66, 67, 68, 69],
[70, 71, 72, 73, 74]]
对于Python 2,使用xrange代替range:
def chunks(lst, n):
"""Yield successive n-sized chunks from lst."""
for i in xrange(0, len(lst), n):
yield lst[i:i + n]
下面是一行理解列表。不过,上面的方法更可取,因为使用命名函数使代码更容易理解。对于Python 3:
[lst[i:i + n] for i in range(0, len(lst), n)]
对于Python 2:
[lst[i:i + n] for i in xrange(0, len(lst), n)]