如何将任意长度的列表拆分为大小相等的块?


请参阅如果数据结果将直接用于循环,并且不需要存储,则如何以块形式遍历列表。

对于字符串输入的同一问题,请参见每n个字符拆分字符串?。相同的技术通常适用,但也有一些变化。


当前回答

代码:

def split_list(the_list, chunk_size):
    result_list = []
    while the_list:
        result_list.append(the_list[:chunk_size])
        the_list = the_list[chunk_size:]
    return result_list

a_list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

print split_list(a_list, 3)

结果:

[[1, 2, 3], [4, 5, 6], [7, 8, 9], [10]]

其他回答

我很好奇不同方法的性能,这里是:

在Python 3.5.1上测试

import time
batch_size = 7
arr_len = 298937

#---------slice-------------

print("\r\nslice")
start = time.time()
arr = [i for i in range(0, arr_len)]
while True:
    if not arr:
        break

    tmp = arr[0:batch_size]
    arr = arr[batch_size:-1]
print(time.time() - start)

#-----------index-----------

print("\r\nindex")
arr = [i for i in range(0, arr_len)]
start = time.time()
for i in range(0, round(len(arr) / batch_size + 1)):
    tmp = arr[batch_size * i : batch_size * (i + 1)]
print(time.time() - start)

#----------batches 1------------

def batch(iterable, n=1):
    l = len(iterable)
    for ndx in range(0, l, n):
        yield iterable[ndx:min(ndx + n, l)]

print("\r\nbatches 1")
arr = [i for i in range(0, arr_len)]
start = time.time()
for x in batch(arr, batch_size):
    tmp = x
print(time.time() - start)

#----------batches 2------------

from itertools import islice, chain

def batch(iterable, size):
    sourceiter = iter(iterable)
    while True:
        batchiter = islice(sourceiter, size)
        yield chain([next(batchiter)], batchiter)


print("\r\nbatches 2")
arr = [i for i in range(0, arr_len)]
start = time.time()
for x in batch(arr, batch_size):
    tmp = x
print(time.time() - start)

#---------chunks-------------
def chunks(l, n):
    """Yield successive n-sized chunks from l."""
    for i in range(0, len(l), n):
        yield l[i:i + n]
print("\r\nchunks")
arr = [i for i in range(0, arr_len)]
start = time.time()
for x in chunks(arr, batch_size):
    tmp = x
print(time.time() - start)

#-----------grouper-----------

from itertools import zip_longest # for Python 3.x
#from six.moves import zip_longest # for both (uses the six compat library)

def grouper(iterable, n, padvalue=None):
    "grouper(3, 'abcdefg', 'x') --> ('a','b','c'), ('d','e','f'), ('g','x','x')"
    return zip_longest(*[iter(iterable)]*n, fillvalue=padvalue)

arr = [i for i in range(0, arr_len)]
print("\r\ngrouper")
start = time.time()
for x in grouper(arr, batch_size):
    tmp = x
print(time.time() - start)

结果:

slice
31.18285083770752

index
0.02184295654296875

batches 1
0.03503894805908203

batches 2
0.22681021690368652

chunks
0.019841909408569336

grouper
0.006506919860839844

用户@tzot的解决方案zip_langest(*[iter(lst)]*n,fillvalue=padvalue)非常优雅,但如果lst的长度不能被n整除,它会填充最后一个子列表,以保持其长度与其他子列表的长度匹配。然而,如果这不可取,那么只需使用zip()生成类似的循环zip,并将lst的剩余元素(不能生成“完整”子列表)附加到输出即可。

输出示例为ABCDEFG,3->ABC DEF G。

单线版本(Python>=3.8):

list(map(list, zip(*[iter(lst)]*n))) + ([rest] if (rest:=lst[len(lst)//n*n : ]) else [])

A函数:

def chunkify(lst, chunk_size):
    nested = list(map(list, zip(*[iter(lst)]*chunk_size)))
    rest = lst[len(lst)//chunk_size*chunk_size: ]
    if rest:
        nested.append(rest)
    return nested

生成器(尽管每个批次都是一个元组):

def chunkify(lst, chunk_size):
    for tup in zip(*[iter(lst)]*chunk_size):
        yield tup
    rest = tuple(lst[len(lst)//chunk_size*chunk_size: ])
    if rest:
        yield rest

它比这里的一些最流行的答案产生相同的输出更快。

my_list, n = list(range(1_000_000)), 12

%timeit list(chunks(my_list, n))                                         # @Ned_Batchelder
# 36.4 ms ± 1.6 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

%timeit [my_list[i:i+n] for i in range(0, len(my_list), n)]              # @Ned_Batchelder
# 34.6 ms ± 1.12 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

%timeit it = iter(my_list); list(iter(lambda: list(islice(it, n)), []))  # @senderle
# 60.6 ms ± 5.36 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

%timeit list(mit.chunked(my_list, n))                                    # @pylang
# 59.4 ms ± 4.92 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

%timeit chunkify(my_list, n)
# 25.8 ms ± 1.84 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

同样,从Python 3.12开始,这个功能将作为itertools模块中的批处理方法来实现(目前是一个配方),因此这个答案很可能会被Python 3.12淘汰。

我在不创建temorary列表对象的情况下提出了以下解决方案,该对象可以与任何可迭代对象一起使用。请注意,此版本适用于Python 2.x:

def chunked(iterable, size):
    stop = []
    it = iter(iterable)
    def _next_chunk():
        try:
            for _ in xrange(size):
                yield next(it)
        except StopIteration:
            stop.append(True)
            return

    while not stop:
        yield _next_chunk()

for it in chunked(xrange(16), 4):
   print list(it)

输出:

[0, 1, 2, 3]
[4, 5, 6, 7]
[8, 9, 10, 11]
[12, 13, 14, 15] 
[]

正如您所看到的,如果len(可迭代)%size==0,那么我们有额外的空迭代器对象。但我不认为这是个大问题。

直接从(旧的)Python文档(itertools的配方):

from itertools import izip, chain, repeat

def grouper(n, iterable, padvalue=None):
    "grouper(3, 'abcdefg', 'x') --> ('a','b','c'), ('d','e','f'), ('g','x','x')"
    return izip(*[chain(iterable, repeat(padvalue, n-1))]*n)

J.F.Sebastian建议的当前版本:

#from itertools import izip_longest as zip_longest # for Python 2.x
from itertools import zip_longest # for Python 3.x
#from six.moves import zip_longest # for both (uses the six compat library)

def grouper(n, iterable, padvalue=None):
    "grouper(3, 'abcdefg', 'x') --> ('a','b','c'), ('d','e','f'), ('g','x','x')"
    return zip_longest(*[iter(iterable)]*n, fillvalue=padvalue)

我猜圭多的时间机器工作了,会工作的。

这些解决方案之所以有效,是因为[iter(iterable)]*n(或早期版本中的等价物)创建了一个迭代器,在列表中重复n次。izip_length然后有效地执行“每个”迭代器的循环;因为这是同一个迭代器,所以每一个这样的调用都会使它前进,从而导致每个这样的zip循环生成一个由n个项组成的元组。

我在这个问题的副本中看到了最棒的Python式答案:

from itertools import zip_longest

a = range(1, 16)
i = iter(a)
r = list(zip_longest(i, i, i))
>>> print(r)
[(1, 2, 3), (4, 5, 6), (7, 8, 9), (10, 11, 12), (13, 14, 15)]

您可以为任何n创建n元组。如果a=范围(1,15),那么结果将是:

[(1, 2, 3), (4, 5, 6), (7, 8, 9), (10, 11, 12), (13, 14, None)]

如果列表被平均划分,那么可以用zip替换zip_langest,否则三元组(13、14、None)将丢失。上面使用了Python 3。对于Python 2,请使用izip_length。