如何将任意长度的列表拆分为大小相等的块?


请参阅如果数据结果将直接用于循环,并且不需要存储,则如何以块形式遍历列表。

对于字符串输入的同一问题,请参见每n个字符拆分字符串?。相同的技术通常适用,但也有一些变化。


当前回答

一个简单的解决方案

OP已请求“相等大小的块”。我将“等尺寸”理解为“平衡”尺寸:如果尺寸不可能相等(例如,23/5),我们正在寻找尺寸大致相同的物品组。

这里的输入是:

项目列表:input_list(例如,23个数字的列表)要拆分这些项目的组数:n个组(例如5个)

输入:

input_list = list(range(23))
n_groups = 5

连续元素组:

approx_sizes = len(input_list)/n_groups 

groups_cont = [input_list[int(i*approx_sizes):int((i+1)*approx_sizes)] 
               for i in range(n_groups)]

“每N个”元素组:

groups_leap = [input_list[i::n_groups] 
               for i in range(n_groups)]

后果

print(len(input_list))

print('Contiguous elements lists:')
print(groups_cont)

print('Leap every "N" items lists:')
print(groups_leap)

将输出:23连续元素列表:[[0, 1, 2, 3], [4, 5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16, 17], [18, 19, 20, 21, 22]]跳过每“N”个项目列表:[[0, 5, 10, 15, 20], [1, 6, 11, 16, 21], [2, 7, 12, 17, 22], [3, 8, 13, 18], [4, 9, 14, 19]]

其他回答

这项任务可以在公认答案中使用生成器轻松完成。我正在添加实现长度方法的类实现,这可能对某些人有用。我需要知道进度(使用tqdm),所以生成器应该返回块的数量。

class ChunksIterator(object):
    def __init__(self, data, n):
        self._data = data
        self._l = len(data)
        self._n = n

    def __iter__(self):
        for i in range(0, self._l, self._n):
            yield self._data[i:i + self._n]

    def __len__(self):
        rem = 1 if self._l % self._n != 0 else 0
        return self._l // self._n + rem

用法:

it = ChunksIterator([1,2,3,4,5,6,7,8,9], 2)
print(len(it))
for i in it:
  print(i)

我很好奇不同方法的性能,这里是:

在Python 3.5.1上测试

import time
batch_size = 7
arr_len = 298937

#---------slice-------------

print("\r\nslice")
start = time.time()
arr = [i for i in range(0, arr_len)]
while True:
    if not arr:
        break

    tmp = arr[0:batch_size]
    arr = arr[batch_size:-1]
print(time.time() - start)

#-----------index-----------

print("\r\nindex")
arr = [i for i in range(0, arr_len)]
start = time.time()
for i in range(0, round(len(arr) / batch_size + 1)):
    tmp = arr[batch_size * i : batch_size * (i + 1)]
print(time.time() - start)

#----------batches 1------------

def batch(iterable, n=1):
    l = len(iterable)
    for ndx in range(0, l, n):
        yield iterable[ndx:min(ndx + n, l)]

print("\r\nbatches 1")
arr = [i for i in range(0, arr_len)]
start = time.time()
for x in batch(arr, batch_size):
    tmp = x
print(time.time() - start)

#----------batches 2------------

from itertools import islice, chain

def batch(iterable, size):
    sourceiter = iter(iterable)
    while True:
        batchiter = islice(sourceiter, size)
        yield chain([next(batchiter)], batchiter)


print("\r\nbatches 2")
arr = [i for i in range(0, arr_len)]
start = time.time()
for x in batch(arr, batch_size):
    tmp = x
print(time.time() - start)

#---------chunks-------------
def chunks(l, n):
    """Yield successive n-sized chunks from l."""
    for i in range(0, len(l), n):
        yield l[i:i + n]
print("\r\nchunks")
arr = [i for i in range(0, arr_len)]
start = time.time()
for x in chunks(arr, batch_size):
    tmp = x
print(time.time() - start)

#-----------grouper-----------

from itertools import zip_longest # for Python 3.x
#from six.moves import zip_longest # for both (uses the six compat library)

def grouper(iterable, n, padvalue=None):
    "grouper(3, 'abcdefg', 'x') --> ('a','b','c'), ('d','e','f'), ('g','x','x')"
    return zip_longest(*[iter(iterable)]*n, fillvalue=padvalue)

arr = [i for i in range(0, arr_len)]
print("\r\ngrouper")
start = time.time()
for x in grouper(arr, batch_size):
    tmp = x
print(time.time() - start)

结果:

slice
31.18285083770752

index
0.02184295654296875

batches 1
0.03503894805908203

batches 2
0.22681021690368652

chunks
0.019841909408569336

grouper
0.006506919860839844

在这一点上,我认为我们需要一个递归生成器,以防万一。。。

在python 2中:

def chunks(li, n):
    if li == []:
        return
    yield li[:n]
    for e in chunks(li[n:], n):
        yield e

在python 3中:

def chunks(li, n):
    if li == []:
        return
    yield li[:n]
    yield from chunks(li[n:], n)

此外,在大规模外星人入侵的情况下,装饰递归生成器可能会变得很方便:

def dec(gen):
    def new_gen(li, n):
        for e in gen(li, n):
            if e == []:
                return
            yield e
    return new_gen

@dec
def chunks(li, n):
    yield li[:n]
    for e in chunks(li[n:], n):
        yield e

itertools模块中的配方提供了两种方法来实现这一点,具体取决于您希望如何处理最终的奇数大小的批次(保留它、用填充值填充它、忽略它或引发异常):

from itertools import islice, izip_longest

def batched(iterable, n):
    "Batch data into lists of length n. The last batch may be shorter."
    # batched('ABCDEFG', 3) --> ABC DEF G
    it = iter(iterable)
    while True:
        batch = list(islice(it, n))
        if not batch:
            return
        yield batch

def grouper(iterable, n, *, incomplete='fill', fillvalue=None):
    "Collect data into non-overlapping fixed-length chunks or blocks"
    # grouper('ABCDEFG', 3, fillvalue='x') --> ABC DEF Gxx
    # grouper('ABCDEFG', 3, incomplete='strict') --> ABC DEF ValueError
    # grouper('ABCDEFG', 3, incomplete='ignore') --> ABC DEF
    args = [iter(iterable)] * n
    if incomplete == 'fill':
        return zip_longest(*args, fillvalue=fillvalue)
    if incomplete == 'strict':
        return zip(*args, strict=True)
    if incomplete == 'ignore':
        return zip(*args)
    else:
        raise ValueError('Expected fill, strict, or ignore')

一种老式的方法,不需要itertools,但仍然可以使用任意生成器:

def chunks(g, n):
  """divide a generator 'g' into small chunks
  Yields:
    a chunk that has 'n' or less items
  """
  n = max(1, n)
  buff = []
  for item in g:
    buff.append(item)
    if len(buff) == n:
      yield buff
      buff = []
  if buff:
    yield buff