在Python中,如何找到整数中的位数?
假设您要求的是可以存储在整数中的最大数字,则该值与实现有关。我建议你在使用python时不要这样想。在任何情况下,相当大的值都可以存储在python 'integer'中。记住,Python使用鸭子类型!
编辑: 我在澄清提问者想要数字数之前给出了我的答案。就此而言,我同意公认答案所建议的方法。没什么可补充的了!
不需要转换为字符串
import math
digits = int(math.log10(n))+1
也可以处理0和负数
import math
if n > 0:
digits = int(math.log10(n))+1
elif n == 0:
digits = 1
else:
digits = int(math.log10(-n))+2 # +1 if you don't count the '-'
你可能想把它放在一个函数中:)
以下是一些基准测试。len(str())对于非常小的数字已经落后了
timeit math.log10(2**8)
1000000 loops, best of 3: 746 ns per loop
timeit len(str(2**8))
1000000 loops, best of 3: 1.1 µs per loop
timeit math.log10(2**100)
1000000 loops, best of 3: 775 ns per loop
timeit len(str(2**100))
100000 loops, best of 3: 3.2 µs per loop
timeit math.log10(2**10000)
1000000 loops, best of 3: 844 ns per loop
timeit len(str(2**10000))
100 loops, best of 3: 10.3 ms per loop
Python 2。* int需要4或8字节(32或64位),这取决于你的Python版本。sys。Maxint(2**31-1用于32位int, 2**63-1用于64位int)将告诉您两种可能性中哪一种获得。
在Python 3中,int(就像Python 2中的long)可以取任意大小,直到可用内存的数量;sys。Getsizeof为任何给定值提供了一个很好的指示,尽管它也计算了一些固定开销:
>>> import sys
>>> sys.getsizeof(0)
12
>>> sys.getsizeof(2**99)
28
如果像其他答案所建议的那样,您正在考虑整数值的某个字符串表示,那么只需取该表示的len,以10为基底或以其他方式!
from math import log10
digits = lambda n: ((n==0) and 1) or int(log10(abs(n)))+1
设数字为n,则n中的位数为:
math.floor(math.log10(n))+1
注意,这将为+ve个整数< 10e15给出正确答案。除此之外,返回类型的数学的精度限制。Log10开始起作用,结果可能相差1。我可以简单地在后面用len(str(n));这需要O(log(n))时间,相当于10的幂次迭代。
感谢@SetiVolkylany让我注意到这个限制。令人惊讶的是,看似正确的解决方案在实现细节中有警告。
对于子孙后代来说,这无疑是迄今为止解决这个问题最慢的方法:
def num_digits(num, number_of_calls=1):
"Returns the number of digits of an integer num."
if num == 0 or num == -1:
return 1 if number_of_calls == 1 else 0
else:
return 1 + num_digits(num/10, number_of_calls+1)
所有的数学。Log10的解会给你带来问题。
数学。Log10速度很快,但当你的数字大于999999999999997时就会出现问题。这是因为浮点数有太多的.9,导致结果四舍五入。
因此,为了获得最佳性能,对于较小的数字使用math.log,并且只使用超出math.log处理范围的len(str()):
def getIntegerPlaces(theNumber):
if theNumber <= 999999999999997:
return int(math.log10(theNumber)) + 1
else:
return len(str(theNumber))
好吧,如果不转换为字符串,我会这样做:
def lenDigits(x):
"""
Assumes int(x)
"""
x = abs(x)
if x < 10:
return 1
return 1 + lenDigits(x / 10)
最小递归FTW
对于整数,可以使用以下方法快速完成:
len(str(abs(1234567890)))
获取"1234567890"的绝对值的字符串长度。
abs返回没有任何负号的数字(只有数字的大小),str将其转换为字符串,len返回该字符串的字符串长度。
如果你想让它为浮点数工作,你可以使用以下任何一个:
# Ignore all after decimal place
len(str(abs(0.1234567890)).split(".")[0])
# Ignore just the decimal place
len(str(abs(0.1234567890)))-1
供以后参考。
正如亲爱的用户@Calvintwr提到的,函数数学。Log10在一个超出范围[-999999999999997,99999999999999997]的数字中有问题,我们会得到浮点数错误。我有这个问题与JavaScript(谷歌V8和NodeJS)和C (GNU GCC编译器),所以一个“纯数学”的解决方案是不可能在这里。
基于这个要点和答案,亲爱的用户@Calvintwr
import math
def get_count_digits(number: int):
"""Return number of digits in a number."""
if number == 0:
return 1
number = abs(number)
if number <= 999999999999997:
return math.floor(math.log10(number)) + 1
count = 0
while number:
count += 1
number //= 10
return count
我在长度不超过20(包括20)的数字上进行了测试,没问题。它必须足够,因为64位系统上的最大整数长度是19 (len(str(sys.maxsize)) == 19)。
assert get_count_digits(-99999999999999999999) == 20
assert get_count_digits(-10000000000000000000) == 20
assert get_count_digits(-9999999999999999999) == 19
assert get_count_digits(-1000000000000000000) == 19
assert get_count_digits(-999999999999999999) == 18
assert get_count_digits(-100000000000000000) == 18
assert get_count_digits(-99999999999999999) == 17
assert get_count_digits(-10000000000000000) == 17
assert get_count_digits(-9999999999999999) == 16
assert get_count_digits(-1000000000000000) == 16
assert get_count_digits(-999999999999999) == 15
assert get_count_digits(-100000000000000) == 15
assert get_count_digits(-99999999999999) == 14
assert get_count_digits(-10000000000000) == 14
assert get_count_digits(-9999999999999) == 13
assert get_count_digits(-1000000000000) == 13
assert get_count_digits(-999999999999) == 12
assert get_count_digits(-100000000000) == 12
assert get_count_digits(-99999999999) == 11
assert get_count_digits(-10000000000) == 11
assert get_count_digits(-9999999999) == 10
assert get_count_digits(-1000000000) == 10
assert get_count_digits(-999999999) == 9
assert get_count_digits(-100000000) == 9
assert get_count_digits(-99999999) == 8
assert get_count_digits(-10000000) == 8
assert get_count_digits(-9999999) == 7
assert get_count_digits(-1000000) == 7
assert get_count_digits(-999999) == 6
assert get_count_digits(-100000) == 6
assert get_count_digits(-99999) == 5
assert get_count_digits(-10000) == 5
assert get_count_digits(-9999) == 4
assert get_count_digits(-1000) == 4
assert get_count_digits(-999) == 3
assert get_count_digits(-100) == 3
assert get_count_digits(-99) == 2
assert get_count_digits(-10) == 2
assert get_count_digits(-9) == 1
assert get_count_digits(-1) == 1
assert get_count_digits(0) == 1
assert get_count_digits(1) == 1
assert get_count_digits(9) == 1
assert get_count_digits(10) == 2
assert get_count_digits(99) == 2
assert get_count_digits(100) == 3
assert get_count_digits(999) == 3
assert get_count_digits(1000) == 4
assert get_count_digits(9999) == 4
assert get_count_digits(10000) == 5
assert get_count_digits(99999) == 5
assert get_count_digits(100000) == 6
assert get_count_digits(999999) == 6
assert get_count_digits(1000000) == 7
assert get_count_digits(9999999) == 7
assert get_count_digits(10000000) == 8
assert get_count_digits(99999999) == 8
assert get_count_digits(100000000) == 9
assert get_count_digits(999999999) == 9
assert get_count_digits(1000000000) == 10
assert get_count_digits(9999999999) == 10
assert get_count_digits(10000000000) == 11
assert get_count_digits(99999999999) == 11
assert get_count_digits(100000000000) == 12
assert get_count_digits(999999999999) == 12
assert get_count_digits(1000000000000) == 13
assert get_count_digits(9999999999999) == 13
assert get_count_digits(10000000000000) == 14
assert get_count_digits(99999999999999) == 14
assert get_count_digits(100000000000000) == 15
assert get_count_digits(999999999999999) == 15
assert get_count_digits(1000000000000000) == 16
assert get_count_digits(9999999999999999) == 16
assert get_count_digits(10000000000000000) == 17
assert get_count_digits(99999999999999999) == 17
assert get_count_digits(100000000000000000) == 18
assert get_count_digits(999999999999999999) == 18
assert get_count_digits(1000000000000000000) == 19
assert get_count_digits(9999999999999999999) == 19
assert get_count_digits(10000000000000000000) == 20
assert get_count_digits(99999999999999999999) == 20
所有使用Python 3.5测试的代码示例
科学记数法格式,去掉指数:
int("{:.5e}".format(1000000).split("e")[1]) + 1
我不知道速度如何,但很简单。
请注意小数点后的有效数位数(“5”在”。如果5e”将科学记数法的小数部分舍入到另一个数字,则可能会出现问题。我把它设得任意大,但可以反映出你所知道的最大数字的长度。
计算w/o将整数转换为字符串的位数:
x=123
x=abs(x)
i = 0
while x >= 10**i:
i +=1
# i is the number of digits
这个问题已经问了好几年了,但是我已经编写了一个基准测试,其中包含了几种计算整数长度的方法。
def libc_size(i):
return libc.snprintf(buf, 100, c_char_p(b'%i'), i) # equivalent to `return snprintf(buf, 100, "%i", i);`
def str_size(i):
return len(str(i)) # Length of `i` as a string
def math_size(i):
return 1 + math.floor(math.log10(i)) # 1 + floor of log10 of i
def exp_size(i):
return int("{:.5e}".format(i).split("e")[1]) + 1 # e.g. `1e10` -> `10` + 1 -> 11
def mod_size(i):
return len("%i" % i) # Uses string modulo instead of str(i)
def fmt_size(i):
return len("{0}".format(i)) # Same as above but str.format
(libc函数需要一些设置,我没有包括这些设置)
size_exp由Brian Preslopsky提供,size_str由GeekTantra提供,size_math由John La Rooy提供
以下是调查结果:
Time for libc size: 1.2204 μs
Time for string size: 309.41 ns
Time for math size: 329.54 ns
Time for exp size: 1.4902 μs
Time for mod size: 249.36 ns
Time for fmt size: 336.63 ns
In order of speed (fastest first):
+ mod_size (1.000000x)
+ str_size (1.240835x)
+ math_size (1.321577x)
+ fmt_size (1.350007x)
+ libc_size (4.894290x)
+ exp_size (5.976219x)
(声明:函数在输入1到1,000,000上运行)
下面是sys的测试结果。Maxsize: 100000 to sys.maxsize:
Time for libc size: 1.4686 μs
Time for string size: 395.76 ns
Time for math size: 485.94 ns
Time for exp size: 1.6826 μs
Time for mod size: 364.25 ns
Time for fmt size: 453.06 ns
In order of speed (fastest first):
+ mod_size (1.000000x)
+ str_size (1.086498x)
+ fmt_size (1.243817x)
+ math_size (1.334066x)
+ libc_size (4.031780x)
+ exp_size (4.619188x)
正如你所看到的,mod_size (len("%i" %i))是最快的,比使用str(i)略快,比其他方法快得多。
def count_digit(number):
if number >= 10:
count = 2
else:
count = 1
while number//10 > 9:
count += 1
number = number//10
return count
如果你必须要求用户输入,然后你必须数出有多少个数字,那么你可以这样做:
count_number = input('Please enter a number\t')
print(len(count_number))
注意:永远不要使用int作为用户输入。
def digits(n)
count = 0
if n == 0:
return 1
if n < 0:
n *= -1
while (n >= 10**count):
count += 1
n += n%10
return count
print(digits(25)) # Should print 2
print(digits(144)) # Should print 3
print(digits(1000)) # Should print 4
print(digits(0)) # Should print 1
我的代码相同如下,我已经使用了log10方法:
from math import *
def digit_count(数量):
if number>1 and round(log10(number))>=log10(number) and number%10!=0 :
return round(log10(number))
elif number>1 and round(log10(number))<log10(number) and number%10!=0:
return round(log10(number))+1
elif number%10==0 and number!=0:
return int(log10(number)+1)
elif number==1 or number==0:
return 1
我必须在1和0的情况下指定,因为log10(1)=0和log10(0)=ND,因此上面提到的条件不满足。但是,此代码仅适用于整数。
下面是一个体积大但速度快的版本:
def nbdigit ( x ):
if x >= 10000000000000000 : # 17 -
return len( str( x ))
if x < 100000000 : # 1 - 8
if x < 10000 : # 1 - 4
if x < 100 : return (x >= 10)+1
else : return (x >= 1000)+3
else: # 5 - 8
if x < 1000000 : return (x >= 100000)+5
else : return (x >= 10000000)+7
else: # 9 - 16
if x < 1000000000000 : # 9 - 12
if x < 10000000000 : return (x >= 1000000000)+9
else : return (x >= 100000000000)+11
else: # 13 - 16
if x < 100000000000000 : return (x >= 10000000000000)+13
else : return (x >= 1000000000000000)+15
只有5个比较不是太大的数字。 在我的电脑上,它比数学运算快30%。Log10版本,比len(str())快5%。 好吧……如果你不疯狂地使用它,就没那么吸引人了。
下面是我用来测试/测量我的函数的一组数字:
n = [ int( (i+1)**( 17/7. )) for i in xrange( 1000000 )] + [0,10**16-1,10**16,10**16+1]
注意:它不管理负数,但适应很容易…
顶部的答案是说mathlog10更快,但我得到的结果表明len(str(n))更快。
arr = []
for i in range(5000000):
arr.append(random.randint(0,12345678901234567890))
%%timeit
for n in arr:
len(str(n))
//2.72 s ± 304 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%%timeit
for n in arr:
int(math.log10(n))+1
//3.13 s ± 545 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
此外,我没有在数学方法中添加逻辑来返回准确的结果,我只能想象这会使它更加缓慢。
我不知道之前的答案是如何证明数学方法更快的。
n = 3566002020360505
count = 0
while(n>0):
count += 1
n = n //10
print(f"The number of digits in the number are: {count}")
output: number中的位数为:16
如果您正在寻找一个不使用内置函数的解决方案。 唯一需要注意的是当你发送a = 000时。
def number_length(a: int) -> int:
length = 0
if a == 0:
return length + 1
else:
while a > 0:
a = a // 10
length += 1
return length
if __name__ == '__main__':
print(number_length(123)
assert number_length(10) == 2
assert number_length(0) == 1
assert number_length(256) == 3
assert number_length(4444) == 4
这是另一种计算任何数字的小数点前的位数的方法
from math import fabs
len(format(fabs(100),".0f"))
Out[102]: 3
len(format(fabs(1e10),".0f"))
Out[165]: 11
len(format(fabs(1235.4576),".0f"))
Out[166]: 4
我做了一个简短的基准测试,进行了10,000次循环
num len(str(num)) ---- len(format(fabs(num),".0f")) ---- speed-up
2**1e0 2.179400e-07 sec ---- 8.577000e-07 sec ---- 0.2541
2**1e1 2.396900e-07 sec ---- 8.668800e-07 sec ---- 0.2765
2**1e2 9.587700e-07 sec ---- 1.330370e-06 sec ---- 0.7207
2**1e3 2.321700e-06 sec ---- 1.761305e-05 sec ---- 0.1318
这是一个较慢但更简单的选择。
但是即使这个解也会给出错误的99999999999998
len(format(fabs(9999999999999998),".0f"))
Out[146]: 16
len(format(fabs(9999999999999999),".0f"))
Out[145]: 17
coin_digit = str(coin_fark).split(".")[1]
coin_digit_len = len(coin_digit)
print(coin_digit_len)
一种快速的解决方案,它使用floor(log10(n))的自我修正实现,基于“更好的方法来计算整数n和b的log(n,b)的floor ?”
import math
def floor_log(n, b):
res = math.floor(math.log(n, b))
c = b**res
return res + (b*c <= n) - (c > n)
def num_digits(n):
return 1 if n == 0 else 1 + floor_log(abs(n), 10)
这非常快,只要n < 10**(2**52)(这非常非常大)就可以工作。
没有导入和str()这样的函数的解决方案
def numlen(num):
result = 1
divider = 10
while num % divider != num:
divider *= 10
result += 1
return result
这里是最简单的方法,不需要将int转换为字符串:
假设给出的数字为15位,例如;n = 787878899999999;
n=787878899999999
n=abs(n) // we are finding absolute value because if the number is negative int to string conversion will produce wrong output
count=0 //we have taken a counter variable which will increment itself till the last digit
while(n):
n=n//10 /*Here we are removing the last digit of a number...it will remove until 0 digits will left...and we know that while(0) is False*/
count+=1 /*this counter variable simply increase its value by 1 after deleting a digit from the original number
print(count) /*when the while loop will become False because n=0, we will simply print the value of counter variable
输入:
n=787878899999999
输出:
15
正如其他答案所示,使用log10会导致大n的错误结果,而使用len(str(…))或手动循环会导致大n的性能变慢。Jodag的答案提供了一个非常好的替代方案,它只适用于可能会使您的计算机崩溃的整数,但我们可以做得更好,甚至更快(对于n足够小的数学。Log2保证是准确的),避免使用对数,而是使用二进制:
def num_digits(n: int) -> int:
assert n > 0
i = int(0.30102999566398114 * (n.bit_length() - 1)) + 1
return (10 ** i <= n) + i
让我们来分析一下。首先是奇怪的n.bit_length()。这将以二进制形式计算长度:
assert 4 == (0b1111).bit_length()
assert 8 == (0b1011_1000).bit_length()
assert 9 == (0b1_1011_1000).bit_length()
与对数不同,这对于整数来说既快速又精确。结果是,这个结果正好是(log2(n)) + 1。为了单独得到地板(log2(n)),我们减去1,因此n.bit_length() - 1。
接下来,我们乘以0.30102999566398114。这相当于log10(2)稍微舍入。这利用了对数规则,以便从地板(log2(n))计算地板(log10(n))的估计值。
现在,您可能想知道我们在这一点上可能有多差,因为尽管0.30102999566398114 * log2(n) ~ log10(n),但对于floor(0.30102999566398114 * floor(log2(n))) ~ floor(log10(n)),情况并非如此。回想一下x - 1 < floor(x) <= x,我们可以做一些快速的计算:
log2(n) - 1 < floor(log2(n)) <= log2(n)
log10(n) - 0.30102999566398114 < 0.30102999566398114 * floor(log2(n)) <= log10(n)
floor(log10(n) - 0.30102999566398114) < floor(0.30102999566398114 * floor(log2(n))) <= floor(log10(n))
请注意,floor(log10(n) - 0.30102999566398114)至少是floor(log10(n)) - 1,这意味着我们与结果最多相差1。这是最后的修正,我们检查10 ** i <= n,当结果太小时导致额外的1 +,当结果刚刚好时导致0 +。
类似于Jodag的答案,这种方法实际上对非常非常大的n无效,大约在10 ** 2 ** 52左右,其中i的误差超过-1。然而,这种大小的整数可能会使您的计算机崩溃,所以这应该足够了。
推荐文章
- 将Pandas或Numpy Nan替换为None以用于MysqlDB
- 使用pandas对同一列进行多个聚合
- 使用Python解析HTML
- django MultiValueDictKeyError错误,我如何处理它
- 如何在for循环期间修改列表条目?
- 我如何在Django中创建一个鼻涕虫?
- 没有名为'django.core.urlresolvers'的模块
- 蟒蛇导出环境文件
- Django - makemigrations -未检测到任何更改
- SQLAlchemy:引擎、连接和会话差异
- 在Python Pandas中删除多个列中的所有重复行
- 更改pandas DataFrame中的特定列名
- 将Pandas多索引转换为列
- 熊猫在每组中获得最高的n个记录
- 熊猫数据帧得到每组的第一行