在Python中,如何找到整数中的位数?


当前回答

设数字为n,则n中的位数为:

math.floor(math.log10(n))+1

注意,这将为+ve个整数< 10e15给出正确答案。除此之外,返回类型的数学的精度限制。Log10开始起作用,结果可能相差1。我可以简单地在后面用len(str(n));这需要O(log(n))时间,相当于10的幂次迭代。

感谢@SetiVolkylany让我注意到这个限制。令人惊讶的是,看似正确的解决方案在实现细节中有警告。

其他回答

这里是最简单的方法,不需要将int转换为字符串:

假设给出的数字为15位,例如;n = 787878899999999;

n=787878899999999 
n=abs(n) // we are finding absolute value because if the number is negative int to string conversion will produce wrong output

count=0 //we have taken a counter variable which will increment itself till the last digit

while(n):
    n=n//10   /*Here we are removing the last digit of a number...it will remove until 0 digits will left...and we know that while(0) is False*/
    count+=1  /*this counter variable simply increase its value by 1 after deleting a digit from the original number
print(count)   /*when the while loop will become False because n=0, we will simply print the value of counter variable

输入:

n=787878899999999

输出:

15

如果你想要一个整数的长度等于这个整数的位数,你总是可以把它转换成字符串,比如str(133),然后像len(str(123))一样找到它的长度。

一种快速的解决方案,它使用floor(log10(n))的自我修正实现,基于“更好的方法来计算整数n和b的log(n,b)的floor ?”

import math

def floor_log(n, b):
    res = math.floor(math.log(n, b))
    c = b**res
    return res + (b*c <= n) - (c > n)

def num_digits(n):
    return 1 if n == 0 else 1 + floor_log(abs(n), 10)

这非常快,只要n < 10**(2**52)(这非常非常大)就可以工作。

假设您要求的是可以存储在整数中的最大数字,则该值与实现有关。我建议你在使用python时不要这样想。在任何情况下,相当大的值都可以存储在python 'integer'中。记住,Python使用鸭子类型!

编辑: 我在澄清提问者想要数字数之前给出了我的答案。就此而言,我同意公认答案所建议的方法。没什么可补充的了!

def count_digit(number):
  if number >= 10:
    count = 2
  else:
    count = 1
  while number//10 > 9:
    count += 1
    number = number//10
  return count