在Python中,如何找到整数中的位数?


当前回答

from math import log10
digits = lambda n: ((n==0) and 1) or int(log10(abs(n)))+1

其他回答

计算w/o将整数转换为字符串的位数:

x=123
x=abs(x)
i = 0
while x >= 10**i:
    i +=1
# i is the number of digits

这个问题已经问了好几年了,但是我已经编写了一个基准测试,其中包含了几种计算整数长度的方法。

def libc_size(i): 
    return libc.snprintf(buf, 100, c_char_p(b'%i'), i) # equivalent to `return snprintf(buf, 100, "%i", i);`

def str_size(i):
    return len(str(i)) # Length of `i` as a string

def math_size(i):
    return 1 + math.floor(math.log10(i)) # 1 + floor of log10 of i

def exp_size(i):
    return int("{:.5e}".format(i).split("e")[1]) + 1 # e.g. `1e10` -> `10` + 1 -> 11

def mod_size(i):
    return len("%i" % i) # Uses string modulo instead of str(i)

def fmt_size(i):
    return len("{0}".format(i)) # Same as above but str.format

(libc函数需要一些设置,我没有包括这些设置)

size_exp由Brian Preslopsky提供,size_str由GeekTantra提供,size_math由John La Rooy提供

以下是调查结果:

Time for libc size:      1.2204 μs
Time for string size:    309.41 ns
Time for math size:      329.54 ns
Time for exp size:       1.4902 μs
Time for mod size:       249.36 ns
Time for fmt size:       336.63 ns
In order of speed (fastest first):
+ mod_size (1.000000x)
+ str_size (1.240835x)
+ math_size (1.321577x)
+ fmt_size (1.350007x)
+ libc_size (4.894290x)
+ exp_size (5.976219x)

(声明:函数在输入1到1,000,000上运行)

下面是sys的测试结果。Maxsize: 100000 to sys.maxsize:

Time for libc size:      1.4686 μs
Time for string size:    395.76 ns
Time for math size:      485.94 ns
Time for exp size:       1.6826 μs
Time for mod size:       364.25 ns
Time for fmt size:       453.06 ns
In order of speed (fastest first):
+ mod_size (1.000000x)
+ str_size (1.086498x)
+ fmt_size (1.243817x)
+ math_size (1.334066x)
+ libc_size (4.031780x)
+ exp_size (4.619188x)

正如你所看到的,mod_size (len("%i" %i))是最快的,比使用str(i)略快,比其他方法快得多。

不需要转换为字符串

import math
digits = int(math.log10(n))+1

也可以处理0和负数

import math
if n > 0:
    digits = int(math.log10(n))+1
elif n == 0:
    digits = 1
else:
    digits = int(math.log10(-n))+2 # +1 if you don't count the '-' 

你可能想把它放在一个函数中:)

以下是一些基准测试。len(str())对于非常小的数字已经落后了

timeit math.log10(2**8)
1000000 loops, best of 3: 746 ns per loop
timeit len(str(2**8))
1000000 loops, best of 3: 1.1 µs per loop

timeit math.log10(2**100)
1000000 loops, best of 3: 775 ns per loop
 timeit len(str(2**100))
100000 loops, best of 3: 3.2 µs per loop

timeit math.log10(2**10000)
1000000 loops, best of 3: 844 ns per loop
timeit len(str(2**10000))
100 loops, best of 3: 10.3 ms per loop

所有的数学。Log10的解会给你带来问题。

数学。Log10速度很快,但当你的数字大于999999999999997时就会出现问题。这是因为浮点数有太多的.9,导致结果四舍五入。

因此,为了获得最佳性能,对于较小的数字使用math.log,并且只使用超出math.log处理范围的len(str()):

def getIntegerPlaces(theNumber):
    if theNumber <= 999999999999997:
        return int(math.log10(theNumber)) + 1
    else:
        return len(str(theNumber))

设数字为n,则n中的位数为:

math.floor(math.log10(n))+1

注意,这将为+ve个整数< 10e15给出正确答案。除此之外,返回类型的数学的精度限制。Log10开始起作用,结果可能相差1。我可以简单地在后面用len(str(n));这需要O(log(n))时间,相当于10的幂次迭代。

感谢@SetiVolkylany让我注意到这个限制。令人惊讶的是,看似正确的解决方案在实现细节中有警告。