在Python中,如何找到整数中的位数?


当前回答

这是另一种计算任何数字的小数点前的位数的方法

from math import fabs

len(format(fabs(100),".0f"))
Out[102]: 3

len(format(fabs(1e10),".0f"))
Out[165]: 11

len(format(fabs(1235.4576),".0f"))
Out[166]: 4

我做了一个简短的基准测试,进行了10,000次循环

num     len(str(num))     ----  len(format(fabs(num),".0f")) ---- speed-up
2**1e0  2.179400e-07 sec  ----     8.577000e-07 sec          ---- 0.2541
2**1e1  2.396900e-07 sec  ----     8.668800e-07 sec          ---- 0.2765
2**1e2  9.587700e-07 sec  ----     1.330370e-06 sec          ---- 0.7207
2**1e3  2.321700e-06 sec  ----     1.761305e-05 sec          ---- 0.1318

这是一个较慢但更简单的选择。

但是即使这个解也会给出错误的99999999999998

len(format(fabs(9999999999999998),".0f"))
Out[146]: 16
len(format(fabs(9999999999999999),".0f"))
Out[145]: 17

其他回答

如果您正在寻找一个不使用内置函数的解决方案。 唯一需要注意的是当你发送a = 000时。

def number_length(a: int) -> int:
    length = 0
    if a == 0:
        return length + 1
    else:
        while a > 0:
            a = a // 10
            length += 1
        return length
    

if __name__ == '__main__':
    print(number_length(123)
    assert number_length(10) == 2
    assert number_length(0) == 1
    assert number_length(256) == 3
    assert number_length(4444) == 4
>>> a=12345
>>> a.__str__().__len__()
5
def digits(n)
    count = 0
    if n == 0:
        return 1
    
    if n < 0:
        n *= -1

    while (n >= 10**count):
        count += 1
        n += n%10

    return count

print(digits(25))   # Should print 2
print(digits(144))  # Should print 3
print(digits(1000)) # Should print 4
print(digits(0))    # Should print 1

Python 2。* int需要4或8字节(32或64位),这取决于你的Python版本。sys。Maxint(2**31-1用于32位int, 2**63-1用于64位int)将告诉您两种可能性中哪一种获得。

在Python 3中,int(就像Python 2中的long)可以取任意大小,直到可用内存的数量;sys。Getsizeof为任何给定值提供了一个很好的指示,尽管它也计算了一些固定开销:

>>> import sys
>>> sys.getsizeof(0)
12
>>> sys.getsizeof(2**99)
28

如果像其他答案所建议的那样,您正在考虑整数值的某个字符串表示,那么只需取该表示的len,以10为基底或以其他方式!

一种快速的解决方案,它使用floor(log10(n))的自我修正实现,基于“更好的方法来计算整数n和b的log(n,b)的floor ?”

import math

def floor_log(n, b):
    res = math.floor(math.log(n, b))
    c = b**res
    return res + (b*c <= n) - (c > n)

def num_digits(n):
    return 1 if n == 0 else 1 + floor_log(abs(n), 10)

这非常快,只要n < 10**(2**52)(这非常非常大)就可以工作。