在Python中,如何找到整数中的位数?


当前回答

计算w/o将整数转换为字符串的位数:

x=123
x=abs(x)
i = 0
while x >= 10**i:
    i +=1
# i is the number of digits

其他回答

没有导入和str()这样的函数的解决方案

def numlen(num):
    result = 1
    divider = 10
    while num % divider != num:
        divider *= 10
        result += 1
    return result

正如其他答案所示,使用log10会导致大n的错误结果,而使用len(str(…))或手动循环会导致大n的性能变慢。Jodag的答案提供了一个非常好的替代方案,它只适用于可能会使您的计算机崩溃的整数,但我们可以做得更好,甚至更快(对于n足够小的数学。Log2保证是准确的),避免使用对数,而是使用二进制:

def num_digits(n: int) -> int:
    assert n > 0
    i = int(0.30102999566398114 * (n.bit_length() - 1)) + 1
    return (10 ** i <= n) + i

让我们来分析一下。首先是奇怪的n.bit_length()。这将以二进制形式计算长度:

assert 4 == (0b1111).bit_length()
assert 8 == (0b1011_1000).bit_length()
assert 9 == (0b1_1011_1000).bit_length()

与对数不同,这对于整数来说既快速又精确。结果是,这个结果正好是(log2(n)) + 1。为了单独得到地板(log2(n)),我们减去1,因此n.bit_length() - 1。

接下来,我们乘以0.30102999566398114。这相当于log10(2)稍微舍入。这利用了对数规则,以便从地板(log2(n))计算地板(log10(n))的估计值。

现在,您可能想知道我们在这一点上可能有多差,因为尽管0.30102999566398114 * log2(n) ~ log10(n),但对于floor(0.30102999566398114 * floor(log2(n))) ~ floor(log10(n)),情况并非如此。回想一下x - 1 < floor(x) <= x,我们可以做一些快速的计算:

log2(n) - 1 < floor(log2(n)) <= log2(n)

log10(n) - 0.30102999566398114 < 0.30102999566398114 * floor(log2(n)) <= log10(n)

floor(log10(n) - 0.30102999566398114) < floor(0.30102999566398114 * floor(log2(n))) <= floor(log10(n))

请注意,floor(log10(n) - 0.30102999566398114)至少是floor(log10(n)) - 1,这意味着我们与结果最多相差1。这是最后的修正,我们检查10 ** i <= n,当结果太小时导致额外的1 +,当结果刚刚好时导致0 +。

类似于Jodag的答案,这种方法实际上对非常非常大的n无效,大约在10 ** 2 ** 52左右,其中i的误差超过-1。然而,这种大小的整数可能会使您的计算机崩溃,所以这应该足够了。

所有的数学。Log10的解会给你带来问题。

数学。Log10速度很快,但当你的数字大于999999999999997时就会出现问题。这是因为浮点数有太多的.9,导致结果四舍五入。

因此,为了获得最佳性能,对于较小的数字使用math.log,并且只使用超出math.log处理范围的len(str()):

def getIntegerPlaces(theNumber):
    if theNumber <= 999999999999997:
        return int(math.log10(theNumber)) + 1
    else:
        return len(str(theNumber))

如果你想要一个整数的长度等于这个整数的位数,你总是可以把它转换成字符串,比如str(133),然后像len(str(123))一样找到它的长度。

顶部的答案是说mathlog10更快,但我得到的结果表明len(str(n))更快。

arr = []
for i in range(5000000):
    arr.append(random.randint(0,12345678901234567890))
%%timeit

for n in arr:
    len(str(n))
//2.72 s ± 304 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%%timeit

for n in arr:
    int(math.log10(n))+1
//3.13 s ± 545 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

此外,我没有在数学方法中添加逻辑来返回准确的结果,我只能想象这会使它更加缓慢。

我不知道之前的答案是如何证明数学方法更快的。