在Python中,如何找到整数中的位数?


当前回答

顶部的答案是说mathlog10更快,但我得到的结果表明len(str(n))更快。

arr = []
for i in range(5000000):
    arr.append(random.randint(0,12345678901234567890))
%%timeit

for n in arr:
    len(str(n))
//2.72 s ± 304 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%%timeit

for n in arr:
    int(math.log10(n))+1
//3.13 s ± 545 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

此外,我没有在数学方法中添加逻辑来返回准确的结果,我只能想象这会使它更加缓慢。

我不知道之前的答案是如何证明数学方法更快的。

其他回答

设数字为n,则n中的位数为:

math.floor(math.log10(n))+1

注意,这将为+ve个整数< 10e15给出正确答案。除此之外,返回类型的数学的精度限制。Log10开始起作用,结果可能相差1。我可以简单地在后面用len(str(n));这需要O(log(n))时间,相当于10的幂次迭代。

感谢@SetiVolkylany让我注意到这个限制。令人惊讶的是,看似正确的解决方案在实现细节中有警告。

计算w/o将整数转换为字符串的位数:

x=123
x=abs(x)
i = 0
while x >= 10**i:
    i +=1
# i is the number of digits

假设您要求的是可以存储在整数中的最大数字,则该值与实现有关。我建议你在使用python时不要这样想。在任何情况下,相当大的值都可以存储在python 'integer'中。记住,Python使用鸭子类型!

编辑: 我在澄清提问者想要数字数之前给出了我的答案。就此而言,我同意公认答案所建议的方法。没什么可补充的了!

我的代码相同如下,我已经使用了log10方法:

from math import *

def digit_count(数量):

if number>1 and round(log10(number))>=log10(number) and number%10!=0 :
    return round(log10(number))
elif  number>1 and round(log10(number))<log10(number) and number%10!=0:
    return round(log10(number))+1
elif number%10==0 and number!=0:
    return int(log10(number)+1)
elif number==1 or number==0:
    return 1

我必须在1和0的情况下指定,因为log10(1)=0和log10(0)=ND,因此上面提到的条件不满足。但是,此代码仅适用于整数。

正如其他答案所示,使用log10会导致大n的错误结果,而使用len(str(…))或手动循环会导致大n的性能变慢。Jodag的答案提供了一个非常好的替代方案,它只适用于可能会使您的计算机崩溃的整数,但我们可以做得更好,甚至更快(对于n足够小的数学。Log2保证是准确的),避免使用对数,而是使用二进制:

def num_digits(n: int) -> int:
    assert n > 0
    i = int(0.30102999566398114 * (n.bit_length() - 1)) + 1
    return (10 ** i <= n) + i

让我们来分析一下。首先是奇怪的n.bit_length()。这将以二进制形式计算长度:

assert 4 == (0b1111).bit_length()
assert 8 == (0b1011_1000).bit_length()
assert 9 == (0b1_1011_1000).bit_length()

与对数不同,这对于整数来说既快速又精确。结果是,这个结果正好是(log2(n)) + 1。为了单独得到地板(log2(n)),我们减去1,因此n.bit_length() - 1。

接下来,我们乘以0.30102999566398114。这相当于log10(2)稍微舍入。这利用了对数规则,以便从地板(log2(n))计算地板(log10(n))的估计值。

现在,您可能想知道我们在这一点上可能有多差,因为尽管0.30102999566398114 * log2(n) ~ log10(n),但对于floor(0.30102999566398114 * floor(log2(n))) ~ floor(log10(n)),情况并非如此。回想一下x - 1 < floor(x) <= x,我们可以做一些快速的计算:

log2(n) - 1 < floor(log2(n)) <= log2(n)

log10(n) - 0.30102999566398114 < 0.30102999566398114 * floor(log2(n)) <= log10(n)

floor(log10(n) - 0.30102999566398114) < floor(0.30102999566398114 * floor(log2(n))) <= floor(log10(n))

请注意,floor(log10(n) - 0.30102999566398114)至少是floor(log10(n)) - 1,这意味着我们与结果最多相差1。这是最后的修正,我们检查10 ** i <= n,当结果太小时导致额外的1 +,当结果刚刚好时导致0 +。

类似于Jodag的答案,这种方法实际上对非常非常大的n无效,大约在10 ** 2 ** 52左右,其中i的误差超过-1。然而,这种大小的整数可能会使您的计算机崩溃,所以这应该足够了。