在Python中,如何找到整数中的位数?
当前回答
顶部的答案是说mathlog10更快,但我得到的结果表明len(str(n))更快。
arr = []
for i in range(5000000):
arr.append(random.randint(0,12345678901234567890))
%%timeit
for n in arr:
len(str(n))
//2.72 s ± 304 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%%timeit
for n in arr:
int(math.log10(n))+1
//3.13 s ± 545 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
此外,我没有在数学方法中添加逻辑来返回准确的结果,我只能想象这会使它更加缓慢。
我不知道之前的答案是如何证明数学方法更快的。
其他回答
正如其他答案所示,使用log10会导致大n的错误结果,而使用len(str(…))或手动循环会导致大n的性能变慢。Jodag的答案提供了一个非常好的替代方案,它只适用于可能会使您的计算机崩溃的整数,但我们可以做得更好,甚至更快(对于n足够小的数学。Log2保证是准确的),避免使用对数,而是使用二进制:
def num_digits(n: int) -> int:
assert n > 0
i = int(0.30102999566398114 * (n.bit_length() - 1)) + 1
return (10 ** i <= n) + i
让我们来分析一下。首先是奇怪的n.bit_length()。这将以二进制形式计算长度:
assert 4 == (0b1111).bit_length()
assert 8 == (0b1011_1000).bit_length()
assert 9 == (0b1_1011_1000).bit_length()
与对数不同,这对于整数来说既快速又精确。结果是,这个结果正好是(log2(n)) + 1。为了单独得到地板(log2(n)),我们减去1,因此n.bit_length() - 1。
接下来,我们乘以0.30102999566398114。这相当于log10(2)稍微舍入。这利用了对数规则,以便从地板(log2(n))计算地板(log10(n))的估计值。
现在,您可能想知道我们在这一点上可能有多差,因为尽管0.30102999566398114 * log2(n) ~ log10(n),但对于floor(0.30102999566398114 * floor(log2(n))) ~ floor(log10(n)),情况并非如此。回想一下x - 1 < floor(x) <= x,我们可以做一些快速的计算:
log2(n) - 1 < floor(log2(n)) <= log2(n)
log10(n) - 0.30102999566398114 < 0.30102999566398114 * floor(log2(n)) <= log10(n)
floor(log10(n) - 0.30102999566398114) < floor(0.30102999566398114 * floor(log2(n))) <= floor(log10(n))
请注意,floor(log10(n) - 0.30102999566398114)至少是floor(log10(n)) - 1,这意味着我们与结果最多相差1。这是最后的修正,我们检查10 ** i <= n,当结果太小时导致额外的1 +,当结果刚刚好时导致0 +。
类似于Jodag的答案,这种方法实际上对非常非常大的n无效,大约在10 ** 2 ** 52左右,其中i的误差超过-1。然而,这种大小的整数可能会使您的计算机崩溃,所以这应该足够了。
一种快速的解决方案,它使用floor(log10(n))的自我修正实现,基于“更好的方法来计算整数n和b的log(n,b)的floor ?”
import math
def floor_log(n, b):
res = math.floor(math.log(n, b))
c = b**res
return res + (b*c <= n) - (c > n)
def num_digits(n):
return 1 if n == 0 else 1 + floor_log(abs(n), 10)
这非常快,只要n < 10**(2**52)(这非常非常大)就可以工作。
下面是一个体积大但速度快的版本:
def nbdigit ( x ):
if x >= 10000000000000000 : # 17 -
return len( str( x ))
if x < 100000000 : # 1 - 8
if x < 10000 : # 1 - 4
if x < 100 : return (x >= 10)+1
else : return (x >= 1000)+3
else: # 5 - 8
if x < 1000000 : return (x >= 100000)+5
else : return (x >= 10000000)+7
else: # 9 - 16
if x < 1000000000000 : # 9 - 12
if x < 10000000000 : return (x >= 1000000000)+9
else : return (x >= 100000000000)+11
else: # 13 - 16
if x < 100000000000000 : return (x >= 10000000000000)+13
else : return (x >= 1000000000000000)+15
只有5个比较不是太大的数字。 在我的电脑上,它比数学运算快30%。Log10版本,比len(str())快5%。 好吧……如果你不疯狂地使用它,就没那么吸引人了。
下面是我用来测试/测量我的函数的一组数字:
n = [ int( (i+1)**( 17/7. )) for i in xrange( 1000000 )] + [0,10**16-1,10**16,10**16+1]
注意:它不管理负数,但适应很容易…
设数字为n,则n中的位数为:
math.floor(math.log10(n))+1
注意,这将为+ve个整数< 10e15给出正确答案。除此之外,返回类型的数学的精度限制。Log10开始起作用,结果可能相差1。我可以简单地在后面用len(str(n));这需要O(log(n))时间,相当于10的幂次迭代。
感谢@SetiVolkylany让我注意到这个限制。令人惊讶的是,看似正确的解决方案在实现细节中有警告。
这个问题已经问了好几年了,但是我已经编写了一个基准测试,其中包含了几种计算整数长度的方法。
def libc_size(i):
return libc.snprintf(buf, 100, c_char_p(b'%i'), i) # equivalent to `return snprintf(buf, 100, "%i", i);`
def str_size(i):
return len(str(i)) # Length of `i` as a string
def math_size(i):
return 1 + math.floor(math.log10(i)) # 1 + floor of log10 of i
def exp_size(i):
return int("{:.5e}".format(i).split("e")[1]) + 1 # e.g. `1e10` -> `10` + 1 -> 11
def mod_size(i):
return len("%i" % i) # Uses string modulo instead of str(i)
def fmt_size(i):
return len("{0}".format(i)) # Same as above but str.format
(libc函数需要一些设置,我没有包括这些设置)
size_exp由Brian Preslopsky提供,size_str由GeekTantra提供,size_math由John La Rooy提供
以下是调查结果:
Time for libc size: 1.2204 μs
Time for string size: 309.41 ns
Time for math size: 329.54 ns
Time for exp size: 1.4902 μs
Time for mod size: 249.36 ns
Time for fmt size: 336.63 ns
In order of speed (fastest first):
+ mod_size (1.000000x)
+ str_size (1.240835x)
+ math_size (1.321577x)
+ fmt_size (1.350007x)
+ libc_size (4.894290x)
+ exp_size (5.976219x)
(声明:函数在输入1到1,000,000上运行)
下面是sys的测试结果。Maxsize: 100000 to sys.maxsize:
Time for libc size: 1.4686 μs
Time for string size: 395.76 ns
Time for math size: 485.94 ns
Time for exp size: 1.6826 μs
Time for mod size: 364.25 ns
Time for fmt size: 453.06 ns
In order of speed (fastest first):
+ mod_size (1.000000x)
+ str_size (1.086498x)
+ fmt_size (1.243817x)
+ math_size (1.334066x)
+ libc_size (4.031780x)
+ exp_size (4.619188x)
正如你所看到的,mod_size (len("%i" %i))是最快的,比使用str(i)略快,比其他方法快得多。
推荐文章
- 证书验证失败:无法获得本地颁发者证书
- 当使用pip3安装包时,“Python中的ssl模块不可用”
- 无法切换Python与pyenv
- Python if not == vs if !=
- 如何从scikit-learn决策树中提取决策规则?
- 为什么在Mac OS X v10.9 (Mavericks)的终端中apt-get功能不起作用?
- 确定记录是否存在的最快方法
- 将旋转的xtick标签与各自的xtick对齐
- 为什么元组可以包含可变项?
- 如何合并字典的字典?
- 如何创建类属性?
- 不区分大小写的“in”
- 在Python中获取迭代器中的元素个数
- 解析日期字符串并更改格式
- 使用try和。Python中的if