在Python中,如何找到整数中的位数?
当前回答
正如其他答案所示,使用log10会导致大n的错误结果,而使用len(str(…))或手动循环会导致大n的性能变慢。Jodag的答案提供了一个非常好的替代方案,它只适用于可能会使您的计算机崩溃的整数,但我们可以做得更好,甚至更快(对于n足够小的数学。Log2保证是准确的),避免使用对数,而是使用二进制:
def num_digits(n: int) -> int:
assert n > 0
i = int(0.30102999566398114 * (n.bit_length() - 1)) + 1
return (10 ** i <= n) + i
让我们来分析一下。首先是奇怪的n.bit_length()。这将以二进制形式计算长度:
assert 4 == (0b1111).bit_length()
assert 8 == (0b1011_1000).bit_length()
assert 9 == (0b1_1011_1000).bit_length()
与对数不同,这对于整数来说既快速又精确。结果是,这个结果正好是(log2(n)) + 1。为了单独得到地板(log2(n)),我们减去1,因此n.bit_length() - 1。
接下来,我们乘以0.30102999566398114。这相当于log10(2)稍微舍入。这利用了对数规则,以便从地板(log2(n))计算地板(log10(n))的估计值。
现在,您可能想知道我们在这一点上可能有多差,因为尽管0.30102999566398114 * log2(n) ~ log10(n),但对于floor(0.30102999566398114 * floor(log2(n))) ~ floor(log10(n)),情况并非如此。回想一下x - 1 < floor(x) <= x,我们可以做一些快速的计算:
log2(n) - 1 < floor(log2(n)) <= log2(n)
log10(n) - 0.30102999566398114 < 0.30102999566398114 * floor(log2(n)) <= log10(n)
floor(log10(n) - 0.30102999566398114) < floor(0.30102999566398114 * floor(log2(n))) <= floor(log10(n))
请注意,floor(log10(n) - 0.30102999566398114)至少是floor(log10(n)) - 1,这意味着我们与结果最多相差1。这是最后的修正,我们检查10 ** i <= n,当结果太小时导致额外的1 +,当结果刚刚好时导致0 +。
类似于Jodag的答案,这种方法实际上对非常非常大的n无效,大约在10 ** 2 ** 52左右,其中i的误差超过-1。然而,这种大小的整数可能会使您的计算机崩溃,所以这应该足够了。
其他回答
这里是最简单的方法,不需要将int转换为字符串:
假设给出的数字为15位,例如;n = 787878899999999;
n=787878899999999
n=abs(n) // we are finding absolute value because if the number is negative int to string conversion will produce wrong output
count=0 //we have taken a counter variable which will increment itself till the last digit
while(n):
n=n//10 /*Here we are removing the last digit of a number...it will remove until 0 digits will left...and we know that while(0) is False*/
count+=1 /*this counter variable simply increase its value by 1 after deleting a digit from the original number
print(count) /*when the while loop will become False because n=0, we will simply print the value of counter variable
输入:
n=787878899999999
输出:
15
Python 2。* int需要4或8字节(32或64位),这取决于你的Python版本。sys。Maxint(2**31-1用于32位int, 2**63-1用于64位int)将告诉您两种可能性中哪一种获得。
在Python 3中,int(就像Python 2中的long)可以取任意大小,直到可用内存的数量;sys。Getsizeof为任何给定值提供了一个很好的指示,尽管它也计算了一些固定开销:
>>> import sys
>>> sys.getsizeof(0)
12
>>> sys.getsizeof(2**99)
28
如果像其他答案所建议的那样,您正在考虑整数值的某个字符串表示,那么只需取该表示的len,以10为基底或以其他方式!
设数字为n,则n中的位数为:
math.floor(math.log10(n))+1
注意,这将为+ve个整数< 10e15给出正确答案。除此之外,返回类型的数学的精度限制。Log10开始起作用,结果可能相差1。我可以简单地在后面用len(str(n));这需要O(log(n))时间,相当于10的幂次迭代。
感谢@SetiVolkylany让我注意到这个限制。令人惊讶的是,看似正确的解决方案在实现细节中有警告。
不需要转换为字符串
import math
digits = int(math.log10(n))+1
也可以处理0和负数
import math
if n > 0:
digits = int(math.log10(n))+1
elif n == 0:
digits = 1
else:
digits = int(math.log10(-n))+2 # +1 if you don't count the '-'
你可能想把它放在一个函数中:)
以下是一些基准测试。len(str())对于非常小的数字已经落后了
timeit math.log10(2**8)
1000000 loops, best of 3: 746 ns per loop
timeit len(str(2**8))
1000000 loops, best of 3: 1.1 µs per loop
timeit math.log10(2**100)
1000000 loops, best of 3: 775 ns per loop
timeit len(str(2**100))
100000 loops, best of 3: 3.2 µs per loop
timeit math.log10(2**10000)
1000000 loops, best of 3: 844 ns per loop
timeit len(str(2**10000))
100 loops, best of 3: 10.3 ms per loop
下面是一个体积大但速度快的版本:
def nbdigit ( x ):
if x >= 10000000000000000 : # 17 -
return len( str( x ))
if x < 100000000 : # 1 - 8
if x < 10000 : # 1 - 4
if x < 100 : return (x >= 10)+1
else : return (x >= 1000)+3
else: # 5 - 8
if x < 1000000 : return (x >= 100000)+5
else : return (x >= 10000000)+7
else: # 9 - 16
if x < 1000000000000 : # 9 - 12
if x < 10000000000 : return (x >= 1000000000)+9
else : return (x >= 100000000000)+11
else: # 13 - 16
if x < 100000000000000 : return (x >= 10000000000000)+13
else : return (x >= 1000000000000000)+15
只有5个比较不是太大的数字。 在我的电脑上,它比数学运算快30%。Log10版本,比len(str())快5%。 好吧……如果你不疯狂地使用它,就没那么吸引人了。
下面是我用来测试/测量我的函数的一组数字:
n = [ int( (i+1)**( 17/7. )) for i in xrange( 1000000 )] + [0,10**16-1,10**16,10**16+1]
注意:它不管理负数,但适应很容易…
推荐文章
- 证书验证失败:无法获得本地颁发者证书
- 当使用pip3安装包时,“Python中的ssl模块不可用”
- 无法切换Python与pyenv
- Python if not == vs if !=
- 如何从scikit-learn决策树中提取决策规则?
- 为什么在Mac OS X v10.9 (Mavericks)的终端中apt-get功能不起作用?
- 确定记录是否存在的最快方法
- 将旋转的xtick标签与各自的xtick对齐
- 为什么元组可以包含可变项?
- 如何合并字典的字典?
- 如何创建类属性?
- 不区分大小写的“in”
- 在Python中获取迭代器中的元素个数
- 解析日期字符串并更改格式
- 使用try和。Python中的if