在Python中,如何找到整数中的位数?


当前回答

下面是一个体积大但速度快的版本:

def nbdigit ( x ):
    if x >= 10000000000000000 : # 17 -
        return len( str( x ))
    if x < 100000000 : # 1 - 8
        if x < 10000 : # 1 - 4
            if x < 100             : return (x >= 10)+1 
            else                   : return (x >= 1000)+3
        else: # 5 - 8                                                 
            if x < 1000000         : return (x >= 100000)+5 
            else                   : return (x >= 10000000)+7
    else: # 9 - 16 
        if x < 1000000000000 : # 9 - 12
            if x < 10000000000     : return (x >= 1000000000)+9 
            else                   : return (x >= 100000000000)+11
        else: # 13 - 16
            if x < 100000000000000 : return (x >= 10000000000000)+13 
            else                   : return (x >= 1000000000000000)+15

只有5个比较不是太大的数字。 在我的电脑上,它比数学运算快30%。Log10版本,比len(str())快5%。 好吧……如果你不疯狂地使用它,就没那么吸引人了。

下面是我用来测试/测量我的函数的一组数字:

n = [ int( (i+1)**( 17/7. )) for i in xrange( 1000000 )] + [0,10**16-1,10**16,10**16+1]

注意:它不管理负数,但适应很容易…

其他回答

如果您正在寻找一个不使用内置函数的解决方案。 唯一需要注意的是当你发送a = 000时。

def number_length(a: int) -> int:
    length = 0
    if a == 0:
        return length + 1
    else:
        while a > 0:
            a = a // 10
            length += 1
        return length
    

if __name__ == '__main__':
    print(number_length(123)
    assert number_length(10) == 2
    assert number_length(0) == 1
    assert number_length(256) == 3
    assert number_length(4444) == 4

一种快速的解决方案,它使用floor(log10(n))的自我修正实现,基于“更好的方法来计算整数n和b的log(n,b)的floor ?”

import math

def floor_log(n, b):
    res = math.floor(math.log(n, b))
    c = b**res
    return res + (b*c <= n) - (c > n)

def num_digits(n):
    return 1 if n == 0 else 1 + floor_log(abs(n), 10)

这非常快,只要n < 10**(2**52)(这非常非常大)就可以工作。

没有导入和str()这样的函数的解决方案

def numlen(num):
    result = 1
    divider = 10
    while num % divider != num:
        divider *= 10
        result += 1
    return result
coin_digit = str(coin_fark).split(".")[1]
coin_digit_len = len(coin_digit)
print(coin_digit_len)

这个问题已经问了好几年了,但是我已经编写了一个基准测试,其中包含了几种计算整数长度的方法。

def libc_size(i): 
    return libc.snprintf(buf, 100, c_char_p(b'%i'), i) # equivalent to `return snprintf(buf, 100, "%i", i);`

def str_size(i):
    return len(str(i)) # Length of `i` as a string

def math_size(i):
    return 1 + math.floor(math.log10(i)) # 1 + floor of log10 of i

def exp_size(i):
    return int("{:.5e}".format(i).split("e")[1]) + 1 # e.g. `1e10` -> `10` + 1 -> 11

def mod_size(i):
    return len("%i" % i) # Uses string modulo instead of str(i)

def fmt_size(i):
    return len("{0}".format(i)) # Same as above but str.format

(libc函数需要一些设置,我没有包括这些设置)

size_exp由Brian Preslopsky提供,size_str由GeekTantra提供,size_math由John La Rooy提供

以下是调查结果:

Time for libc size:      1.2204 μs
Time for string size:    309.41 ns
Time for math size:      329.54 ns
Time for exp size:       1.4902 μs
Time for mod size:       249.36 ns
Time for fmt size:       336.63 ns
In order of speed (fastest first):
+ mod_size (1.000000x)
+ str_size (1.240835x)
+ math_size (1.321577x)
+ fmt_size (1.350007x)
+ libc_size (4.894290x)
+ exp_size (5.976219x)

(声明:函数在输入1到1,000,000上运行)

下面是sys的测试结果。Maxsize: 100000 to sys.maxsize:

Time for libc size:      1.4686 μs
Time for string size:    395.76 ns
Time for math size:      485.94 ns
Time for exp size:       1.6826 μs
Time for mod size:       364.25 ns
Time for fmt size:       453.06 ns
In order of speed (fastest first):
+ mod_size (1.000000x)
+ str_size (1.086498x)
+ fmt_size (1.243817x)
+ math_size (1.334066x)
+ libc_size (4.031780x)
+ exp_size (4.619188x)

正如你所看到的,mod_size (len("%i" %i))是最快的,比使用str(i)略快,比其他方法快得多。