在Python中,如何找到整数中的位数?
当前回答
如果您正在寻找一个不使用内置函数的解决方案。 唯一需要注意的是当你发送a = 000时。
def number_length(a: int) -> int:
length = 0
if a == 0:
return length + 1
else:
while a > 0:
a = a // 10
length += 1
return length
if __name__ == '__main__':
print(number_length(123)
assert number_length(10) == 2
assert number_length(0) == 1
assert number_length(256) == 3
assert number_length(4444) == 4
其他回答
一种快速的解决方案,它使用floor(log10(n))的自我修正实现,基于“更好的方法来计算整数n和b的log(n,b)的floor ?”
import math
def floor_log(n, b):
res = math.floor(math.log(n, b))
c = b**res
return res + (b*c <= n) - (c > n)
def num_digits(n):
return 1 if n == 0 else 1 + floor_log(abs(n), 10)
这非常快,只要n < 10**(2**52)(这非常非常大)就可以工作。
正如其他答案所示,使用log10会导致大n的错误结果,而使用len(str(…))或手动循环会导致大n的性能变慢。Jodag的答案提供了一个非常好的替代方案,它只适用于可能会使您的计算机崩溃的整数,但我们可以做得更好,甚至更快(对于n足够小的数学。Log2保证是准确的),避免使用对数,而是使用二进制:
def num_digits(n: int) -> int:
assert n > 0
i = int(0.30102999566398114 * (n.bit_length() - 1)) + 1
return (10 ** i <= n) + i
让我们来分析一下。首先是奇怪的n.bit_length()。这将以二进制形式计算长度:
assert 4 == (0b1111).bit_length()
assert 8 == (0b1011_1000).bit_length()
assert 9 == (0b1_1011_1000).bit_length()
与对数不同,这对于整数来说既快速又精确。结果是,这个结果正好是(log2(n)) + 1。为了单独得到地板(log2(n)),我们减去1,因此n.bit_length() - 1。
接下来,我们乘以0.30102999566398114。这相当于log10(2)稍微舍入。这利用了对数规则,以便从地板(log2(n))计算地板(log10(n))的估计值。
现在,您可能想知道我们在这一点上可能有多差,因为尽管0.30102999566398114 * log2(n) ~ log10(n),但对于floor(0.30102999566398114 * floor(log2(n))) ~ floor(log10(n)),情况并非如此。回想一下x - 1 < floor(x) <= x,我们可以做一些快速的计算:
log2(n) - 1 < floor(log2(n)) <= log2(n)
log10(n) - 0.30102999566398114 < 0.30102999566398114 * floor(log2(n)) <= log10(n)
floor(log10(n) - 0.30102999566398114) < floor(0.30102999566398114 * floor(log2(n))) <= floor(log10(n))
请注意,floor(log10(n) - 0.30102999566398114)至少是floor(log10(n)) - 1,这意味着我们与结果最多相差1。这是最后的修正,我们检查10 ** i <= n,当结果太小时导致额外的1 +,当结果刚刚好时导致0 +。
类似于Jodag的答案,这种方法实际上对非常非常大的n无效,大约在10 ** 2 ** 52左右,其中i的误差超过-1。然而,这种大小的整数可能会使您的计算机崩溃,所以这应该足够了。
from math import log10
digits = lambda n: ((n==0) and 1) or int(log10(abs(n)))+1
计算w/o将整数转换为字符串的位数:
x=123
x=abs(x)
i = 0
while x >= 10**i:
i +=1
# i is the number of digits
下面是一个体积大但速度快的版本:
def nbdigit ( x ):
if x >= 10000000000000000 : # 17 -
return len( str( x ))
if x < 100000000 : # 1 - 8
if x < 10000 : # 1 - 4
if x < 100 : return (x >= 10)+1
else : return (x >= 1000)+3
else: # 5 - 8
if x < 1000000 : return (x >= 100000)+5
else : return (x >= 10000000)+7
else: # 9 - 16
if x < 1000000000000 : # 9 - 12
if x < 10000000000 : return (x >= 1000000000)+9
else : return (x >= 100000000000)+11
else: # 13 - 16
if x < 100000000000000 : return (x >= 10000000000000)+13
else : return (x >= 1000000000000000)+15
只有5个比较不是太大的数字。 在我的电脑上,它比数学运算快30%。Log10版本,比len(str())快5%。 好吧……如果你不疯狂地使用它,就没那么吸引人了。
下面是我用来测试/测量我的函数的一组数字:
n = [ int( (i+1)**( 17/7. )) for i in xrange( 1000000 )] + [0,10**16-1,10**16,10**16+1]
注意:它不管理负数,但适应很容易…
推荐文章
- Python 3.7数据类中的类继承
- 如何在PyTorch中初始化权重?
- 计数唯一的值在一列熊猫数据框架像在Qlik?
- 使用Pandas将列转换为行
- 从matplotlib中的颜色映射中获取单个颜色
- 将Pandas或Numpy Nan替换为None以用于MysqlDB
- 使用pandas对同一列进行多个聚合
- 使用Python解析HTML
- django MultiValueDictKeyError错误,我如何处理它
- 如何在for循环期间修改列表条目?
- 我如何在Django中创建一个鼻涕虫?
- 没有名为'django.core.urlresolvers'的模块
- 蟒蛇导出环境文件
- Django - makemigrations -未检测到任何更改
- SQLAlchemy:引擎、连接和会话差异