在Python中,如何找到整数中的位数?


当前回答

对于整数,可以使用以下方法快速完成:

len(str(abs(1234567890)))

获取"1234567890"的绝对值的字符串长度。

abs返回没有任何负号的数字(只有数字的大小),str将其转换为字符串,len返回该字符串的字符串长度。

如果你想让它为浮点数工作,你可以使用以下任何一个:

# Ignore all after decimal place
len(str(abs(0.1234567890)).split(".")[0])

# Ignore just the decimal place
len(str(abs(0.1234567890)))-1

供以后参考。

其他回答

好吧,如果不转换为字符串,我会这样做:

def lenDigits(x): 
    """
    Assumes int(x)
    """

    x = abs(x)

    if x < 10:
        return 1

    return 1 + lenDigits(x / 10)

最小递归FTW

Python 2。* int需要4或8字节(32或64位),这取决于你的Python版本。sys。Maxint(2**31-1用于32位int, 2**63-1用于64位int)将告诉您两种可能性中哪一种获得。

在Python 3中,int(就像Python 2中的long)可以取任意大小,直到可用内存的数量;sys。Getsizeof为任何给定值提供了一个很好的指示,尽管它也计算了一些固定开销:

>>> import sys
>>> sys.getsizeof(0)
12
>>> sys.getsizeof(2**99)
28

如果像其他答案所建议的那样,您正在考虑整数值的某个字符串表示,那么只需取该表示的len,以10为基底或以其他方式!

正如其他答案所示,使用log10会导致大n的错误结果,而使用len(str(…))或手动循环会导致大n的性能变慢。Jodag的答案提供了一个非常好的替代方案,它只适用于可能会使您的计算机崩溃的整数,但我们可以做得更好,甚至更快(对于n足够小的数学。Log2保证是准确的),避免使用对数,而是使用二进制:

def num_digits(n: int) -> int:
    assert n > 0
    i = int(0.30102999566398114 * (n.bit_length() - 1)) + 1
    return (10 ** i <= n) + i

让我们来分析一下。首先是奇怪的n.bit_length()。这将以二进制形式计算长度:

assert 4 == (0b1111).bit_length()
assert 8 == (0b1011_1000).bit_length()
assert 9 == (0b1_1011_1000).bit_length()

与对数不同,这对于整数来说既快速又精确。结果是,这个结果正好是(log2(n)) + 1。为了单独得到地板(log2(n)),我们减去1,因此n.bit_length() - 1。

接下来,我们乘以0.30102999566398114。这相当于log10(2)稍微舍入。这利用了对数规则,以便从地板(log2(n))计算地板(log10(n))的估计值。

现在,您可能想知道我们在这一点上可能有多差,因为尽管0.30102999566398114 * log2(n) ~ log10(n),但对于floor(0.30102999566398114 * floor(log2(n))) ~ floor(log10(n)),情况并非如此。回想一下x - 1 < floor(x) <= x,我们可以做一些快速的计算:

log2(n) - 1 < floor(log2(n)) <= log2(n)

log10(n) - 0.30102999566398114 < 0.30102999566398114 * floor(log2(n)) <= log10(n)

floor(log10(n) - 0.30102999566398114) < floor(0.30102999566398114 * floor(log2(n))) <= floor(log10(n))

请注意,floor(log10(n) - 0.30102999566398114)至少是floor(log10(n)) - 1,这意味着我们与结果最多相差1。这是最后的修正,我们检查10 ** i <= n,当结果太小时导致额外的1 +,当结果刚刚好时导致0 +。

类似于Jodag的答案,这种方法实际上对非常非常大的n无效,大约在10 ** 2 ** 52左右,其中i的误差超过-1。然而,这种大小的整数可能会使您的计算机崩溃,所以这应该足够了。

这里是最简单的方法,不需要将int转换为字符串:

假设给出的数字为15位,例如;n = 787878899999999;

n=787878899999999 
n=abs(n) // we are finding absolute value because if the number is negative int to string conversion will produce wrong output

count=0 //we have taken a counter variable which will increment itself till the last digit

while(n):
    n=n//10   /*Here we are removing the last digit of a number...it will remove until 0 digits will left...and we know that while(0) is False*/
    count+=1  /*this counter variable simply increase its value by 1 after deleting a digit from the original number
print(count)   /*when the while loop will become False because n=0, we will simply print the value of counter variable

输入:

n=787878899999999

输出:

15

对于子孙后代来说,这无疑是迄今为止解决这个问题最慢的方法:

def num_digits(num, number_of_calls=1):
    "Returns the number of digits of an integer num."
    if num == 0 or num == -1:
        return 1 if number_of_calls == 1 else 0
    else:
        return 1 + num_digits(num/10, number_of_calls+1)