在Python中,如何找到整数中的位数?


当前回答

我的代码相同如下,我已经使用了log10方法:

from math import *

def digit_count(数量):

if number>1 and round(log10(number))>=log10(number) and number%10!=0 :
    return round(log10(number))
elif  number>1 and round(log10(number))<log10(number) and number%10!=0:
    return round(log10(number))+1
elif number%10==0 and number!=0:
    return int(log10(number)+1)
elif number==1 or number==0:
    return 1

我必须在1和0的情况下指定,因为log10(1)=0和log10(0)=ND,因此上面提到的条件不满足。但是,此代码仅适用于整数。

其他回答

您可以使用以下解决方案:

n = input("Enter number: ")
print(len(n))
n = int(n)

下面是一个体积大但速度快的版本:

def nbdigit ( x ):
    if x >= 10000000000000000 : # 17 -
        return len( str( x ))
    if x < 100000000 : # 1 - 8
        if x < 10000 : # 1 - 4
            if x < 100             : return (x >= 10)+1 
            else                   : return (x >= 1000)+3
        else: # 5 - 8                                                 
            if x < 1000000         : return (x >= 100000)+5 
            else                   : return (x >= 10000000)+7
    else: # 9 - 16 
        if x < 1000000000000 : # 9 - 12
            if x < 10000000000     : return (x >= 1000000000)+9 
            else                   : return (x >= 100000000000)+11
        else: # 13 - 16
            if x < 100000000000000 : return (x >= 10000000000000)+13 
            else                   : return (x >= 1000000000000000)+15

只有5个比较不是太大的数字。 在我的电脑上,它比数学运算快30%。Log10版本,比len(str())快5%。 好吧……如果你不疯狂地使用它,就没那么吸引人了。

下面是我用来测试/测量我的函数的一组数字:

n = [ int( (i+1)**( 17/7. )) for i in xrange( 1000000 )] + [0,10**16-1,10**16,10**16+1]

注意:它不管理负数,但适应很容易…

from math import log10
digits = lambda n: ((n==0) and 1) or int(log10(abs(n)))+1

对于整数,可以使用以下方法快速完成:

len(str(abs(1234567890)))

获取"1234567890"的绝对值的字符串长度。

abs返回没有任何负号的数字(只有数字的大小),str将其转换为字符串,len返回该字符串的字符串长度。

如果你想让它为浮点数工作,你可以使用以下任何一个:

# Ignore all after decimal place
len(str(abs(0.1234567890)).split(".")[0])

# Ignore just the decimal place
len(str(abs(0.1234567890)))-1

供以后参考。

设数字为n,则n中的位数为:

math.floor(math.log10(n))+1

注意,这将为+ve个整数< 10e15给出正确答案。除此之外,返回类型的数学的精度限制。Log10开始起作用,结果可能相差1。我可以简单地在后面用len(str(n));这需要O(log(n))时间,相当于10的幂次迭代。

感谢@SetiVolkylany让我注意到这个限制。令人惊讶的是,看似正确的解决方案在实现细节中有警告。