在Python中,如何找到整数中的位数?


当前回答

一种快速的解决方案,它使用floor(log10(n))的自我修正实现,基于“更好的方法来计算整数n和b的log(n,b)的floor ?”

import math

def floor_log(n, b):
    res = math.floor(math.log(n, b))
    c = b**res
    return res + (b*c <= n) - (c > n)

def num_digits(n):
    return 1 if n == 0 else 1 + floor_log(abs(n), 10)

这非常快,只要n < 10**(2**52)(这非常非常大)就可以工作。

其他回答

科学记数法格式,去掉指数:

int("{:.5e}".format(1000000).split("e")[1]) + 1

我不知道速度如何,但很简单。

请注意小数点后的有效数位数(“5”在”。如果5e”将科学记数法的小数部分舍入到另一个数字,则可能会出现问题。我把它设得任意大,但可以反映出你所知道的最大数字的长度。

正如其他答案所示,使用log10会导致大n的错误结果,而使用len(str(…))或手动循环会导致大n的性能变慢。Jodag的答案提供了一个非常好的替代方案,它只适用于可能会使您的计算机崩溃的整数,但我们可以做得更好,甚至更快(对于n足够小的数学。Log2保证是准确的),避免使用对数,而是使用二进制:

def num_digits(n: int) -> int:
    assert n > 0
    i = int(0.30102999566398114 * (n.bit_length() - 1)) + 1
    return (10 ** i <= n) + i

让我们来分析一下。首先是奇怪的n.bit_length()。这将以二进制形式计算长度:

assert 4 == (0b1111).bit_length()
assert 8 == (0b1011_1000).bit_length()
assert 9 == (0b1_1011_1000).bit_length()

与对数不同,这对于整数来说既快速又精确。结果是,这个结果正好是(log2(n)) + 1。为了单独得到地板(log2(n)),我们减去1,因此n.bit_length() - 1。

接下来,我们乘以0.30102999566398114。这相当于log10(2)稍微舍入。这利用了对数规则,以便从地板(log2(n))计算地板(log10(n))的估计值。

现在,您可能想知道我们在这一点上可能有多差,因为尽管0.30102999566398114 * log2(n) ~ log10(n),但对于floor(0.30102999566398114 * floor(log2(n))) ~ floor(log10(n)),情况并非如此。回想一下x - 1 < floor(x) <= x,我们可以做一些快速的计算:

log2(n) - 1 < floor(log2(n)) <= log2(n)

log10(n) - 0.30102999566398114 < 0.30102999566398114 * floor(log2(n)) <= log10(n)

floor(log10(n) - 0.30102999566398114) < floor(0.30102999566398114 * floor(log2(n))) <= floor(log10(n))

请注意,floor(log10(n) - 0.30102999566398114)至少是floor(log10(n)) - 1,这意味着我们与结果最多相差1。这是最后的修正,我们检查10 ** i <= n,当结果太小时导致额外的1 +,当结果刚刚好时导致0 +。

类似于Jodag的答案,这种方法实际上对非常非常大的n无效,大约在10 ** 2 ** 52左右,其中i的误差超过-1。然而,这种大小的整数可能会使您的计算机崩溃,所以这应该足够了。

一种快速的解决方案,它使用floor(log10(n))的自我修正实现,基于“更好的方法来计算整数n和b的log(n,b)的floor ?”

import math

def floor_log(n, b):
    res = math.floor(math.log(n, b))
    c = b**res
    return res + (b*c <= n) - (c > n)

def num_digits(n):
    return 1 if n == 0 else 1 + floor_log(abs(n), 10)

这非常快,只要n < 10**(2**52)(这非常非常大)就可以工作。

设数字为n,则n中的位数为:

math.floor(math.log10(n))+1

注意,这将为+ve个整数< 10e15给出正确答案。除此之外,返回类型的数学的精度限制。Log10开始起作用,结果可能相差1。我可以简单地在后面用len(str(n));这需要O(log(n))时间,相当于10的幂次迭代。

感谢@SetiVolkylany让我注意到这个限制。令人惊讶的是,看似正确的解决方案在实现细节中有警告。

对于子孙后代来说,这无疑是迄今为止解决这个问题最慢的方法:

def num_digits(num, number_of_calls=1):
    "Returns the number of digits of an integer num."
    if num == 0 or num == -1:
        return 1 if number_of_calls == 1 else 0
    else:
        return 1 + num_digits(num/10, number_of_calls+1)