在Python中,如何找到整数中的位数?


当前回答

不需要转换为字符串

import math
digits = int(math.log10(n))+1

也可以处理0和负数

import math
if n > 0:
    digits = int(math.log10(n))+1
elif n == 0:
    digits = 1
else:
    digits = int(math.log10(-n))+2 # +1 if you don't count the '-' 

你可能想把它放在一个函数中:)

以下是一些基准测试。len(str())对于非常小的数字已经落后了

timeit math.log10(2**8)
1000000 loops, best of 3: 746 ns per loop
timeit len(str(2**8))
1000000 loops, best of 3: 1.1 µs per loop

timeit math.log10(2**100)
1000000 loops, best of 3: 775 ns per loop
 timeit len(str(2**100))
100000 loops, best of 3: 3.2 µs per loop

timeit math.log10(2**10000)
1000000 loops, best of 3: 844 ns per loop
timeit len(str(2**10000))
100 loops, best of 3: 10.3 ms per loop

其他回答

Python 2。* int需要4或8字节(32或64位),这取决于你的Python版本。sys。Maxint(2**31-1用于32位int, 2**63-1用于64位int)将告诉您两种可能性中哪一种获得。

在Python 3中,int(就像Python 2中的long)可以取任意大小,直到可用内存的数量;sys。Getsizeof为任何给定值提供了一个很好的指示,尽管它也计算了一些固定开销:

>>> import sys
>>> sys.getsizeof(0)
12
>>> sys.getsizeof(2**99)
28

如果像其他答案所建议的那样,您正在考虑整数值的某个字符串表示,那么只需取该表示的len,以10为基底或以其他方式!

好吧,如果不转换为字符串,我会这样做:

def lenDigits(x): 
    """
    Assumes int(x)
    """

    x = abs(x)

    if x < 10:
        return 1

    return 1 + lenDigits(x / 10)

最小递归FTW

我的代码相同如下,我已经使用了log10方法:

from math import *

def digit_count(数量):

if number>1 and round(log10(number))>=log10(number) and number%10!=0 :
    return round(log10(number))
elif  number>1 and round(log10(number))<log10(number) and number%10!=0:
    return round(log10(number))+1
elif number%10==0 and number!=0:
    return int(log10(number)+1)
elif number==1 or number==0:
    return 1

我必须在1和0的情况下指定,因为log10(1)=0和log10(0)=ND,因此上面提到的条件不满足。但是,此代码仅适用于整数。

正如其他答案所示,使用log10会导致大n的错误结果,而使用len(str(…))或手动循环会导致大n的性能变慢。Jodag的答案提供了一个非常好的替代方案,它只适用于可能会使您的计算机崩溃的整数,但我们可以做得更好,甚至更快(对于n足够小的数学。Log2保证是准确的),避免使用对数,而是使用二进制:

def num_digits(n: int) -> int:
    assert n > 0
    i = int(0.30102999566398114 * (n.bit_length() - 1)) + 1
    return (10 ** i <= n) + i

让我们来分析一下。首先是奇怪的n.bit_length()。这将以二进制形式计算长度:

assert 4 == (0b1111).bit_length()
assert 8 == (0b1011_1000).bit_length()
assert 9 == (0b1_1011_1000).bit_length()

与对数不同,这对于整数来说既快速又精确。结果是,这个结果正好是(log2(n)) + 1。为了单独得到地板(log2(n)),我们减去1,因此n.bit_length() - 1。

接下来,我们乘以0.30102999566398114。这相当于log10(2)稍微舍入。这利用了对数规则,以便从地板(log2(n))计算地板(log10(n))的估计值。

现在,您可能想知道我们在这一点上可能有多差,因为尽管0.30102999566398114 * log2(n) ~ log10(n),但对于floor(0.30102999566398114 * floor(log2(n))) ~ floor(log10(n)),情况并非如此。回想一下x - 1 < floor(x) <= x,我们可以做一些快速的计算:

log2(n) - 1 < floor(log2(n)) <= log2(n)

log10(n) - 0.30102999566398114 < 0.30102999566398114 * floor(log2(n)) <= log10(n)

floor(log10(n) - 0.30102999566398114) < floor(0.30102999566398114 * floor(log2(n))) <= floor(log10(n))

请注意,floor(log10(n) - 0.30102999566398114)至少是floor(log10(n)) - 1,这意味着我们与结果最多相差1。这是最后的修正,我们检查10 ** i <= n,当结果太小时导致额外的1 +,当结果刚刚好时导致0 +。

类似于Jodag的答案,这种方法实际上对非常非常大的n无效,大约在10 ** 2 ** 52左右,其中i的误差超过-1。然而,这种大小的整数可能会使您的计算机崩溃,所以这应该足够了。

对于整数,可以使用以下方法快速完成:

len(str(abs(1234567890)))

获取"1234567890"的绝对值的字符串长度。

abs返回没有任何负号的数字(只有数字的大小),str将其转换为字符串,len返回该字符串的字符串长度。

如果你想让它为浮点数工作,你可以使用以下任何一个:

# Ignore all after decimal place
len(str(abs(0.1234567890)).split(".")[0])

# Ignore just the decimal place
len(str(abs(0.1234567890)))-1

供以后参考。