我相信有一种方法可以找到长度为n的O(n)无序数组中第k大的元素。也可能是期望O(n)之类的。我们该怎么做呢?


遍历列表。如果当前值大于存储的最大值,则将其存储为最大值,并将1-4向下碰撞,5从列表中删除。如果不是,将它与第2条进行比较,然后做同样的事情。重复,检查所有5个存储值。应该是O(n)


在那个('第k大元素数组')上快速谷歌返回这个:http://discuss.joelonsoftware.com/default.asp?interview.11.509587.17

"Make one pass through tracking the three largest values so far." 

(它是专门为3d最大)

这个答案是:

Build a heap/priority queue.  O(n)
Pop top element.  O(log n)
Pop top element.  O(log n)
Pop top element.  O(log n)

Total = O(n) + 3 O(log n) = O(n)

A Programmer's Companion to Algorithm Analysis给出了一个O(n)的版本,尽管作者指出常数因子如此之高,您可能更喜欢简单的排序-列表-然后选择方法。

我已经回答了你的问题:)


你可以用O(n + kn) = O(n)(对于常数k)表示时间,用O(k)表示空间,通过跟踪你见过的最大的k个元素。

对于数组中的每个元素,您可以扫描k个最大的元素列表,并将最小的元素替换为更大的新元素。

Warren的优先级堆解决方案更简洁。


我会这样做:

initialize empty doubly linked list l
for each element e in array
    if e larger than head(l)
        make e the new head of l
        if size(l) > k
            remove last element from l

the last element of l should now be the kth largest element

您可以简单地存储指向链表中第一个和最后一个元素的指针。它们只在更新列表时更改。

更新:

initialize empty sorted tree l
for each element e in array
    if e between head(l) and tail(l)
        insert e into l // O(log k)
        if size(l) > k
            remove last element from l

the last element of l should now be the kth largest element

这叫做求k阶统计量。有一个非常简单的随机算法(叫做quickselect),平均时间为O(n),最坏情况时间为O(n²),还有一个相当复杂的非随机算法(叫做introselect),最坏情况时间为O(n)。维基百科上有一些信息,但不是很好。

你需要的一切都在这些幻灯片里。只需提取O(n)最坏情况算法(introselect)的基本算法:

Select(A,n,i):
    Divide input into ⌈n/5⌉ groups of size 5.

    /* Partition on median-of-medians */
    medians = array of each group’s median.
    pivot = Select(medians, ⌈n/5⌉, ⌈n/10⌉)
    Left Array L and Right Array G = partition(A, pivot)

    /* Find ith element in L, pivot, or G */
    k = |L| + 1
    If i = k, return pivot
    If i < k, return Select(L, k-1, i)
    If i > k, return Select(G, n-k, i-k)

在Cormen等人的《算法介绍》一书中也有非常详细的描述。


c++标准库几乎完全有这个函数调用nth_element,尽管它确实会修改数据。它有线性运行时间,O(N),它也做部分排序。

const int N = ...;
double a[N];
// ... 
const int m = ...; // m < N
nth_element (a, a + m, a + N);
// a[m] contains the mth element in a

如果你想要一个真正的O(n)算法,而不是O(kn)或类似的算法,那么你应该使用快速选择(它基本上是快速排序,你会丢弃你不感兴趣的分区)。我的教授写了一篇很棒的文章,包括运行时分析:(参考)

QuickSelect算法可以快速找到包含n个元素的无序数组中的第k个最小元素。这是一个随机算法,所以我们计算最坏情况下的预期运行时间。

这是算法。

QuickSelect(A, k)
  let r be chosen uniformly at random in the range 1 to length(A)
  let pivot = A[r]
  let A1, A2 be new arrays
  # split into a pile A1 of small elements and A2 of big elements
  for i = 1 to n
    if A[i] < pivot then
      append A[i] to A1
    else if A[i] > pivot then
      append A[i] to A2
    else
      # do nothing
  end for
  if k <= length(A1):
    # it's in the pile of small elements
    return QuickSelect(A1, k)
  else if k > length(A) - length(A2)
    # it's in the pile of big elements
    return QuickSelect(A2, k - (length(A) - length(A2))
  else
    # it's equal to the pivot
    return pivot

这个算法的运行时间是多少?如果对手为我们抛硬币,我们可能会发现主元总是最大的元素,k总是1,给出的运行时间为

T(n) = Theta(n) + T(n-1) = Theta(n2)

但如果选择确实是随机的,则预期运行时间由

T(n) <= Theta(n) + (1/n) ∑i=1 to nT(max(i, n-i-1))

我们做了一个不完全合理的假设递归总是落在A1或A2中较大的那个。

让我们猜测对于某个a T(n) <= an,然后我们得到

T(n) 
 <= cn + (1/n) ∑i=1 to nT(max(i-1, n-i))
 = cn + (1/n) ∑i=1 to floor(n/2) T(n-i) + (1/n) ∑i=floor(n/2)+1 to n T(i)
 <= cn + 2 (1/n) ∑i=floor(n/2) to n T(i)
 <= cn + 2 (1/n) ∑i=floor(n/2) to n ai

现在我们要用加号右边这个可怕的和来吸收左边的cn。如果我们将其限定为2(1/n)∑i=n/2到n an,我们大致得到2(1/n)(n/2)an = an。但是这个太大了,没有多余的空间来挤进一个cn。让我们用等差级数公式展开和:

i=floor(n/2) to n i  
 = ∑i=1 to n i - ∑i=1 to floor(n/2) i  
 = n(n+1)/2 - floor(n/2)(floor(n/2)+1)/2  
 <= n2/2 - (n/4)2/2  
 = (15/32)n2

我们利用n“足够大”的优势,用更干净(更小)的n/4替换丑陋的地板(n/2)因子。现在我们可以继续

cn + 2 (1/n) ∑i=floor(n/2) to n ai,
 <= cn + (2a/n) (15/32) n2
 = n (c + (15/16)a)
 <= an

提供了> 16c。

得到T(n) = O(n)显然是(n)所以我们得到T(n) = (n)


我想提出一个答案

如果我们取前k个元素并将它们排序成一个k个值的链表

对于每一个其他的值,即使在最坏的情况下如果我们对剩下的n-k个值进行插入排序即使在最坏的情况下,比较的数量也将是k*(n-k)对于前k个要排序的值让它是k*(k-1)所以结果是(nk-k)也就是o(n)

干杯


在线性时间内找到数组的中值,然后使用与快速排序完全相同的划分程序将数组分为两部分,中值左边的值小于(<)中值,右边的值大于(>)中值,这也可以在线性时间内完成,现在,找到数组中第k个元素所在的部分, 现在递归式变成: T(n) = T(n/2) + cn 得到O (n) /。


你确实喜欢快速排序。随机选择一个元素,然后将所有元素推高或推低。此时,您将知道您实际选择了哪个元素,如果它是第k个元素,您就完成了,否则您将重复bin(更高或更低),第k个元素将落在其中。从统计学上讲,找到第k个元素所需的时间随着n, O(n)而增加。


我实现了在n个未排序元素中寻找第k个最小值的动态规划,特别是竞赛方法。执行时间为O(n + klog(n))。所使用的机制在维基百科关于选择算法的页面上被列为方法之一(如上面的帖子之一所示)。你可以阅读算法,也可以在我的博客页面“查找k个最小值”上找到代码(java)。此外,逻辑可以对列表进行部分排序——在O(klog(n))时间内返回第一个K min(或max)。

虽然代码提供了第k个最小值的结果,但可以使用类似的逻辑来查找O(klog(n))中的第k个最大值,忽略创建比赛树的前期工作。


虽然不是很确定O(n)复杂度,但肯定在O(n)和nLog(n)之间。也肯定更接近于O(n)而不是nLog(n)函数是用Java编写的

public int quickSelect(ArrayList<Integer>list, int nthSmallest){
    //Choose random number in range of 0 to array length
    Random random =  new Random();
    //This will give random number which is not greater than length - 1
    int pivotIndex = random.nextInt(list.size() - 1); 

    int pivot = list.get(pivotIndex);

    ArrayList<Integer> smallerNumberList = new ArrayList<Integer>();
    ArrayList<Integer> greaterNumberList = new ArrayList<Integer>();

    //Split list into two. 
    //Value smaller than pivot should go to smallerNumberList
    //Value greater than pivot should go to greaterNumberList
    //Do nothing for value which is equal to pivot
    for(int i=0; i<list.size(); i++){
        if(list.get(i)<pivot){
            smallerNumberList.add(list.get(i));
        }
        else if(list.get(i)>pivot){
            greaterNumberList.add(list.get(i));
        }
        else{
            //Do nothing
        }
    }

    //If smallerNumberList size is greater than nthSmallest value, nthSmallest number must be in this list 
    if(nthSmallest < smallerNumberList.size()){
        return quickSelect(smallerNumberList, nthSmallest);
    }
    //If nthSmallest is greater than [ list.size() - greaterNumberList.size() ], nthSmallest number must be in this list
    //The step is bit tricky. If confusing, please see the above loop once again for clarification.
    else if(nthSmallest > (list.size() - greaterNumberList.size())){
        //nthSmallest will have to be changed here. [ list.size() - greaterNumberList.size() ] elements are already in 
        //smallerNumberList
        nthSmallest = nthSmallest - (list.size() - greaterNumberList.size());
        return quickSelect(greaterNumberList,nthSmallest);
    }
    else{
        return pivot;
    }
}

对于k非常小的值(即k << n),我们可以在~O(n)时间内完成。否则,如果k与n比较,我们得到O(nlogn)


中位数中位数算法的解释可以在这里找到n中第k大的整数: http://cs.indstate.edu/~spitla/presentation.pdf

c++中的实现如下:

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

int findMedian(vector<int> vec){
//    Find median of a vector
    int median;
    size_t size = vec.size();
    median = vec[(size/2)];
    return median;
}

int findMedianOfMedians(vector<vector<int> > values){
    vector<int> medians;

    for (int i = 0; i < values.size(); i++) {
        int m = findMedian(values[i]);
        medians.push_back(m);
    }

    return findMedian(medians);
}

void selectionByMedianOfMedians(const vector<int> values, int k){
//    Divide the list into n/5 lists of 5 elements each
    vector<vector<int> > vec2D;

    int count = 0;
    while (count != values.size()) {
        int countRow = 0;
        vector<int> row;

        while ((countRow < 5) && (count < values.size())) {
            row.push_back(values[count]);
            count++;
            countRow++;
        }
        vec2D.push_back(row);
    }

    cout<<endl<<endl<<"Printing 2D vector : "<<endl;
    for (int i = 0; i < vec2D.size(); i++) {
        for (int j = 0; j < vec2D[i].size(); j++) {
            cout<<vec2D[i][j]<<" ";
        }
        cout<<endl;
    }
    cout<<endl;

//    Calculating a new pivot for making splits
    int m = findMedianOfMedians(vec2D);
    cout<<"Median of medians is : "<<m<<endl;

//    Partition the list into unique elements larger than 'm' (call this sublist L1) and
//    those smaller them 'm' (call this sublist L2)
    vector<int> L1, L2;

    for (int i = 0; i < vec2D.size(); i++) {
        for (int j = 0; j < vec2D[i].size(); j++) {
            if (vec2D[i][j] > m) {
                L1.push_back(vec2D[i][j]);
            }else if (vec2D[i][j] < m){
                L2.push_back(vec2D[i][j]);
            }
        }
    }

//    Checking the splits as per the new pivot 'm'
    cout<<endl<<"Printing L1 : "<<endl;
    for (int i = 0; i < L1.size(); i++) {
        cout<<L1[i]<<" ";
    }

    cout<<endl<<endl<<"Printing L2 : "<<endl;
    for (int i = 0; i < L2.size(); i++) {
        cout<<L2[i]<<" ";
    }

//    Recursive calls
    if ((k - 1) == L1.size()) {
        cout<<endl<<endl<<"Answer :"<<m;
    }else if (k <= L1.size()) {
        return selectionByMedianOfMedians(L1, k);
    }else if (k > (L1.size() + 1)){
        return selectionByMedianOfMedians(L2, k-((int)L1.size())-1);
    }

}

int main()
{
    int values[] = {2, 3, 5, 4, 1, 12, 11, 13, 16, 7, 8, 6, 10, 9, 17, 15, 19, 20, 18, 23, 21, 22, 25, 24, 14};

    vector<int> vec(values, values + 25);

    cout<<"The given array is : "<<endl;
    for (int i = 0; i < vec.size(); i++) {
        cout<<vec[i]<<" ";
    }

    selectionByMedianOfMedians(vec, 8);

    return 0;
}

下面是完整实现的链接,其中相当广泛地解释了在无序算法中查找第k个元素的算法是如何工作的。基本思想是像快速排序一样对数组进行分区。但为了避免极端情况(例如每一步都选择最小的元素作为主元,使算法运行时间退化为O(n^2)),采用特殊的主元选择,称为中位数的中位数算法。在最坏情况和平均情况下,整个解在O(n)时间内运行。

这里是全文的链接(它是关于寻找第k个最小的元素,但寻找第k个最大的元素的原理是相同的):

在无序数组中寻找第k个最小元素


首先,我们可以从未排序的数组中构建一个BST,它需要O(n)时间,从BST中我们可以找到O(log(n))中第k个最小的元素,它的总计数为O(n)。


这是一个Javascript实现。

如果您释放了不能修改数组的约束,则可以使用两个索引来标识“当前分区”(经典快速排序样式- http://www.nczonline.net/blog/2012/11/27/computer-science-in-javascript-quicksort/)来防止使用额外的内存。

function kthMax(a, k){
    var size = a.length;

    var pivot = a[ parseInt(Math.random()*size) ]; //Another choice could have been (size / 2) 

    //Create an array with all element lower than the pivot and an array with all element higher than the pivot
    var i, lowerArray = [], upperArray = [];
    for (i = 0; i  < size; i++){
        var current = a[i];

        if (current < pivot) {
            lowerArray.push(current);
        } else if (current > pivot) {
            upperArray.push(current);
        }
    }

    //Which one should I continue with?
    if(k <= upperArray.length) {
        //Upper
        return kthMax(upperArray, k);
    } else {
        var newK = k - (size - lowerArray.length);

        if (newK > 0) {
            ///Lower
            return kthMax(lowerArray, newK);
        } else {
            //None ... it's the current pivot!
            return pivot;
        }   
    }
}  

如果你想测试它的表现,你可以使用这个变量:

    function kthMax (a, k, logging) {
         var comparisonCount = 0; //Number of comparison that the algorithm uses
         var memoryCount = 0;     //Number of integers in memory that the algorithm uses
         var _log = logging;

         if(k < 0 || k >= a.length) {
            if (_log) console.log ("k is out of range"); 
            return false;
         }      

         function _kthmax(a, k){
             var size = a.length;
             var pivot = a[parseInt(Math.random()*size)];
             if(_log) console.log("Inputs:", a,  "size="+size, "k="+k, "pivot="+pivot);

             // This should never happen. Just a nice check in this exercise
             // if you are playing with the code to avoid never ending recursion            
             if(typeof pivot === "undefined") {
                 if (_log) console.log ("Ops..."); 
                 return false;
             }

             var i, lowerArray = [], upperArray = [];
             for (i = 0; i  < size; i++){
                 var current = a[i];
                 if (current < pivot) {
                     comparisonCount += 1;
                     memoryCount++;
                     lowerArray.push(current);
                 } else if (current > pivot) {
                     comparisonCount += 2;
                     memoryCount++;
                     upperArray.push(current);
                 }
             }
             if(_log) console.log("Pivoting:",lowerArray, "*"+pivot+"*", upperArray);

             if(k <= upperArray.length) {
                 comparisonCount += 1;
                 return _kthmax(upperArray, k);
             } else if (k > size - lowerArray.length) {
                 comparisonCount += 2;
                 return _kthmax(lowerArray, k - (size - lowerArray.length));
             } else {
                 comparisonCount += 2;
                 return pivot;
             }
     /* 
      * BTW, this is the logic for kthMin if we want to implement that... ;-)
      * 

             if(k <= lowerArray.length) {
                 return kthMin(lowerArray, k);
             } else if (k > size - upperArray.length) {
                 return kthMin(upperArray, k - (size - upperArray.length));
             } else 
                 return pivot;
     */            
         }

         var result = _kthmax(a, k);
         return {result: result, iterations: comparisonCount, memory: memoryCount};
     }

剩下的代码只是创建一些游乐场:

    function getRandomArray (n){
        var ar = [];
        for (var i = 0, l = n; i < l; i++) {
            ar.push(Math.round(Math.random() * l))
        }

        return ar;
    }

    //Create a random array of 50 numbers
    var ar = getRandomArray (50);   

现在给你做几次测试。 因为Math.random()每次都会产生不同的结果:

    kthMax(ar, 2, true);
    kthMax(ar, 2);
    kthMax(ar, 2);
    kthMax(ar, 2);
    kthMax(ar, 2);
    kthMax(ar, 2);
    kthMax(ar, 34, true);
    kthMax(ar, 34);
    kthMax(ar, 34);
    kthMax(ar, 34);
    kthMax(ar, 34);
    kthMax(ar, 34);

如果你测试它几次,你甚至可以看到经验的迭代次数,平均来说,O(n) ~=常数* n, k的值不会影响算法。


Python中性感的快速选择

def quickselect(arr, k):
    '''
     k = 1 returns first element in ascending order.
     can be easily modified to return first element in descending order
    '''

    r = random.randrange(0, len(arr))

    a1 = [i for i in arr if i < arr[r]] '''partition'''
    a2 = [i for i in arr if i > arr[r]]

    if k <= len(a1):
        return quickselect(a1, k)
    elif k > len(arr)-len(a2):
        return quickselect(a2, k - (len(arr) - len(a2)))
    else:
        return arr[r]

还有Wirth的选择算法,它的实现比QuickSelect简单。Wirth的选择算法比QuickSelect慢,但经过一些改进,它变得更快。

更详细地说。使用Vladimir Zabrodsky的MODIFIND优化和3中位数的枢轴选择,并注意算法划分部分的最后步骤,我提出了以下算法(想象一下,命名为“LefSelect”):

#define F_SWAP(a,b) { float temp=(a);(a)=(b);(b)=temp; }

# Note: The code needs more than 2 elements to work
float lefselect(float a[], const int n, const int k) {
    int l=0, m = n-1, i=l, j=m;
    float x;

    while (l<m) {
        if( a[k] < a[i] ) F_SWAP(a[i],a[k]);
        if( a[j] < a[i] ) F_SWAP(a[i],a[j]);
        if( a[j] < a[k] ) F_SWAP(a[k],a[j]);

        x=a[k];
        while (j>k & i<k) {
            do i++; while (a[i]<x);
            do j--; while (a[j]>x);

            F_SWAP(a[i],a[j]);
        }
        i++; j--;

        if (j<k) {
            while (a[i]<x) i++;
            l=i; j=m;
        }
        if (k<i) {
            while (x<a[j]) j--;
            m=j; i=l;
        }
    }
    return a[k];
}

在我这里做的基准测试中,LefSelect比QuickSelect快20-30%。


Haskell的解决方案:

kthElem index list = sort list !! index

withShape ~[]     []     = []
withShape ~(x:xs) (y:ys) = x : withShape xs ys

sort []     = []
sort (x:xs) = (sort ls `withShape` ls) ++ [x] ++ (sort rs `withShape` rs)
  where
   ls = filter (<  x)
   rs = filter (>= x)

这通过使用withShape方法来实现中值解的中值,从而发现分区的大小,而无需实际计算分区大小。


下面是一个随机化快速选择的c++实现。这个想法是随机选择一个主元。为了实现随机分区,我们使用一个随机函数rand()来生成l和r之间的索引,将随机生成索引处的元素与最后一个元素交换,最后调用以最后一个元素为枢轴的标准分区过程。

#include<iostream>
#include<climits>
#include<cstdlib>
using namespace std;

int randomPartition(int arr[], int l, int r);

// This function returns k'th smallest element in arr[l..r] using
// QuickSort based method.  ASSUMPTION: ALL ELEMENTS IN ARR[] ARE DISTINCT
int kthSmallest(int arr[], int l, int r, int k)
{
    // If k is smaller than number of elements in array
    if (k > 0 && k <= r - l + 1)
    {
        // Partition the array around a random element and
        // get position of pivot element in sorted array
        int pos = randomPartition(arr, l, r);

        // If position is same as k
        if (pos-l == k-1)
            return arr[pos];
        if (pos-l > k-1)  // If position is more, recur for left subarray
            return kthSmallest(arr, l, pos-1, k);

        // Else recur for right subarray
        return kthSmallest(arr, pos+1, r, k-pos+l-1);
    }

    // If k is more than number of elements in array
    return INT_MAX;
}

void swap(int *a, int *b)
{
    int temp = *a;
    *a = *b;
    *b = temp;
}

// Standard partition process of QuickSort().  It considers the last
// element as pivot and moves all smaller element to left of it and
// greater elements to right. This function is used by randomPartition()
int partition(int arr[], int l, int r)
{
    int x = arr[r], i = l;
    for (int j = l; j <= r - 1; j++)
    {
        if (arr[j] <= x) //arr[i] is bigger than arr[j] so swap them
        {
            swap(&arr[i], &arr[j]);
            i++;
        }
    }
    swap(&arr[i], &arr[r]); // swap the pivot
    return i;
}

// Picks a random pivot element between l and r and partitions
// arr[l..r] around the randomly picked element using partition()
int randomPartition(int arr[], int l, int r)
{
    int n = r-l+1;
    int pivot = rand() % n;
    swap(&arr[l + pivot], &arr[r]);
    return partition(arr, l, r);
}

// Driver program to test above methods
int main()
{
    int arr[] = {12, 3, 5, 7, 4, 19, 26};
    int n = sizeof(arr)/sizeof(arr[0]), k = 3;
    cout << "K'th smallest element is " << kthSmallest(arr, 0, n-1, k);
    return 0;
}

上述解的最坏情况时间复杂度仍为O(n2)。在最坏的情况下,随机函数可能总是选择一个角元素。上述随机化QuickSelect的期望时间复杂度为Θ(n)


我提出了这个算法,似乎是O(n):

假设k=3我们想找出数组中第三大的元素。我将创建三个变量,并将数组中的每一项与这三个变量中的最小值进行比较。如果数组item大于最小值,则用item的值替换最小值变量。我们继续做同样的事情,直到数组结束。三个变量中的最小值是数组中第三大的项。

define variables a=0, b=0, c=0
iterate through the array items
    find minimum a,b,c
    if item > min then replace the min variable with item value
    continue until end of array
the minimum of a,b,c is our answer

为了找到第K大的项,我们需要K个变量。

例如:(k = 3)

[1,2,4,1,7,3,9,5,6,2,9,8]

Final variable values:

a=7 (answer)
b=8
c=9

有人可以审查这个,让我知道我错过了什么?


根据本文,在n个项目的列表中寻找第k个最大的项目,下面的算法在最坏的情况下将花费O(n)时间。

将数组分成n/5个列表,每个列表有5个元素。 求每个5个元素的子数组的中值。 递归地找到所有中位数的中位数,记作M 将数组划分为两个子数组第一个子数组包含大于M的元素,设这个子数组为a1,而其他子数组包含小于M的元素,设这个子数组为a2。 如果k <= |a1|,返回选择(a1,k)。 k−1 = |a1|,返回M。 如果k> |a1| + 1,返回选择(a2,k−a1−1)。

分析:如原文所述:

我们使用中位数将列表分成两部分(前一半, 如果k <= n/2,反之则为后半部分)。这个算法需要 对于某个常数c,递归第一级的时间cn/2 at 下一层(因为我们在大小为n/2的列表中递归),cn/4在 第三层,以此类推。总时间为cn + cn/2 + cn/4 + .... = 2cn = o(n)。

为什么分区大小是5而不是3?

如原文所述:

将列表除以5可以保证最坏情况下70−30的分割。至少 至少一半的中位数大于中位数的中位数 n/5块中的一半至少有3个元素,这就给出了a 3n/10的分割,这意味着另一个分区在最坏情况下是7n/10。 得到T(n) = T(n/5)+T(7n/10)+O(n)由于n/5+7n/10 < 1 最差情况运行时间isO(n)。

现在我尝试将上述算法实现为:

public static int findKthLargestUsingMedian(Integer[] array, int k) {
        // Step 1: Divide the list into n/5 lists of 5 element each.
        int noOfRequiredLists = (int) Math.ceil(array.length / 5.0);
        // Step 2: Find pivotal element aka median of medians.
        int medianOfMedian =  findMedianOfMedians(array, noOfRequiredLists);
        //Now we need two lists split using medianOfMedian as pivot. All elements in list listOne will be grater than medianOfMedian and listTwo will have elements lesser than medianOfMedian.
        List<Integer> listWithGreaterNumbers = new ArrayList<>(); // elements greater than medianOfMedian
        List<Integer> listWithSmallerNumbers = new ArrayList<>(); // elements less than medianOfMedian
        for (Integer element : array) {
            if (element < medianOfMedian) {
                listWithSmallerNumbers.add(element);
            } else if (element > medianOfMedian) {
                listWithGreaterNumbers.add(element);
            }
        }
        // Next step.
        if (k <= listWithGreaterNumbers.size()) return findKthLargestUsingMedian((Integer[]) listWithGreaterNumbers.toArray(new Integer[listWithGreaterNumbers.size()]), k);
        else if ((k - 1) == listWithGreaterNumbers.size()) return medianOfMedian;
        else if (k > (listWithGreaterNumbers.size() + 1)) return findKthLargestUsingMedian((Integer[]) listWithSmallerNumbers.toArray(new Integer[listWithSmallerNumbers.size()]), k-listWithGreaterNumbers.size()-1);
        return -1;
    }

    public static int findMedianOfMedians(Integer[] mainList, int noOfRequiredLists) {
        int[] medians = new int[noOfRequiredLists];
        for (int count = 0; count < noOfRequiredLists; count++) {
            int startOfPartialArray = 5 * count;
            int endOfPartialArray = startOfPartialArray + 5;
            Integer[] partialArray = Arrays.copyOfRange((Integer[]) mainList, startOfPartialArray, endOfPartialArray);
            // Step 2: Find median of each of these sublists.
            int medianIndex = partialArray.length/2;
            medians[count] = partialArray[medianIndex];
        }
        // Step 3: Find median of the medians.
        return medians[medians.length / 2];
    }

为了完成,另一种算法利用优先队列,花费时间O(nlogn)。

public static int findKthLargestUsingPriorityQueue(Integer[] nums, int k) {
        int p = 0;
        int numElements = nums.length;
        // create priority queue where all the elements of nums will be stored
        PriorityQueue<Integer> pq = new PriorityQueue<Integer>();

        // place all the elements of the array to this priority queue
        for (int n : nums) {
            pq.add(n);
        }

        // extract the kth largest element
        while (numElements - k + 1 > 0) {
            p = pq.poll();
            k++;
        }

        return p;
    }

这两个算法都可以被测试为:

public static void main(String[] args) throws IOException {
        Integer[] numbers = new Integer[]{2, 3, 5, 4, 1, 12, 11, 13, 16, 7, 8, 6, 10, 9, 17, 15, 19, 20, 18, 23, 21, 22, 25, 24, 14};
        System.out.println(findKthLargestUsingMedian(numbers, 8));
        System.out.println(findKthLargestUsingPriorityQueue(numbers, 8));
    }

如预期输出为: 18 18


下面是eladv建议的算法的实现(我也把随机pivot的实现放在这里):

public class Median {

    public static void main(String[] s) {

        int[] test = {4,18,20,3,7,13,5,8,2,1,15,17,25,30,16};
        System.out.println(selectK(test,8));

        /*
        int n = 100000000;
        int[] test = new int[n];
        for(int i=0; i<test.length; i++)
            test[i] = (int)(Math.random()*test.length);

        long start = System.currentTimeMillis();
        random_selectK(test, test.length/2);
        long end = System.currentTimeMillis();
        System.out.println(end - start);
        */
    }

    public static int random_selectK(int[] a, int k) {
        if(a.length <= 1)
            return a[0];

        int r = (int)(Math.random() * a.length);
        int p = a[r];

        int small = 0, equal = 0, big = 0;
        for(int i=0; i<a.length; i++) {
            if(a[i] < p) small++;
            else if(a[i] == p) equal++;
            else if(a[i] > p) big++;
        }

        if(k <= small) {
            int[] temp = new int[small];
            for(int i=0, j=0; i<a.length; i++)
                if(a[i] < p)
                    temp[j++] = a[i];
            return random_selectK(temp, k);
        }

        else if (k <= small+equal)
            return p;

        else {
            int[] temp = new int[big];
            for(int i=0, j=0; i<a.length; i++)
                if(a[i] > p)
                    temp[j++] = a[i];
            return random_selectK(temp,k-small-equal);
        }
    }

    public static int selectK(int[] a, int k) {
        if(a.length <= 5) {
            Arrays.sort(a);
            return a[k-1];
        }

        int p = median_of_medians(a);

        int small = 0, equal = 0, big = 0;
        for(int i=0; i<a.length; i++) {
            if(a[i] < p) small++;
            else if(a[i] == p) equal++;
            else if(a[i] > p) big++;
        }

        if(k <= small) {
            int[] temp = new int[small];
            for(int i=0, j=0; i<a.length; i++)
                if(a[i] < p)
                    temp[j++] = a[i];
            return selectK(temp, k);
        }

        else if (k <= small+equal)
            return p;

        else {
            int[] temp = new int[big];
            for(int i=0, j=0; i<a.length; i++)
                if(a[i] > p)
                    temp[j++] = a[i];
            return selectK(temp,k-small-equal);
        }
    }

    private static int median_of_medians(int[] a) {
        int[] b = new int[a.length/5];
        int[] temp = new int[5];
        for(int i=0; i<b.length; i++) {
            for(int j=0; j<5; j++)
                temp[j] = a[5*i + j];
            Arrays.sort(temp);
            b[i] = temp[2];
        }

        return selectK(b, b.length/2 + 1);
    }
}

这种方法怎么样

保持一个长度为k的缓冲区和一个tmp_max,得到tmp_max为O(k)并执行n次因此类似于O(kn)

是这样还是我漏掉了什么?

虽然它没有击败快速选择的平均情况和中值统计方法的最坏情况,但它非常容易理解和实现。


它类似于快速排序策略,在快速排序策略中,我们选择一个任意的枢轴,并将较小的元素放在它的左边,将较大的元素放在右边

    public static int kthElInUnsortedList(List<int> list, int k)
    {
        if (list.Count == 1)
            return list[0];

        List<int> left = new List<int>();
        List<int> right = new List<int>();

        int pivotIndex = list.Count / 2;
        int pivot = list[pivotIndex]; //arbitrary

        for (int i = 0; i < list.Count && i != pivotIndex; i++)
        {
            int currentEl = list[i];
            if (currentEl < pivot)
                left.Add(currentEl);
            else
                right.Add(currentEl);
        }

        if (k == left.Count + 1)
            return pivot;

        if (left.Count < k)
            return kthElInUnsortedList(right, k - left.Count - 1);
        else
            return kthElInUnsortedList(left, k);
    }

转到这个链接的结尾:...........

http://www.geeksforgeeks.org/kth-smallestlargest-element-unsorted-array-set-3-worst-case-linear-time/


创建优先级队列。 将所有元素插入堆中。 调用poll() k次。 getKthLargestElements(int[] arr) { PriorityQueue<Integer> pq = new PriorityQueue<>((x, y) -> (y-x)); //将所有元素插入堆中 For (int ele: arr) pq.offer(避署); //调用poll() k次 int i = 0; 而(i&lt; k) { Int result = pq.poll(); } 返回结果; }


你可以在O(n)个时间和常数空间中找到第k个最小的元素。如果我们认为数组只用于整数。

方法是对数组值的范围进行二分搜索。如果min_value和max_value都在整数范围内,我们可以对该范围进行二分搜索。 我们可以写一个比较器函数,它会告诉我们是否有任何值是第k个最小值或小于第k个最小值或大于第k个最小值。 进行二分搜索,直到找到第k小的数

这是它的代码

类解决方案:

def _iskthsmallest(self, A, val, k):
    less_count, equal_count = 0, 0
    for i in range(len(A)):
        if A[i] == val: equal_count += 1
        if A[i] < val: less_count += 1

    if less_count >= k: return 1
    if less_count + equal_count < k: return -1
    return 0

def kthsmallest_binary(self, A, min_val, max_val, k):
    if min_val == max_val:
        return min_val
    mid = (min_val + max_val)/2
    iskthsmallest = self._iskthsmallest(A, mid, k)
    if iskthsmallest == 0: return mid
    if iskthsmallest > 0: return self.kthsmallest_binary(A, min_val, mid, k)
    return self.kthsmallest_binary(A, mid+1, max_val, k)

# @param A : tuple of integers
# @param B : integer
# @return an integer
def kthsmallest(self, A, k):
    if not A: return 0
    if k > len(A): return 0
    min_val, max_val = min(A), max(A)
    return self.kthsmallest_binary(A, min_val, max_val, k)

还有一种算法,比快速选择算法性能更好。它叫做弗洛伊德-铆钉(FR)算法。

原文:https://doi.org/10.1145/360680.360694

下载版本:http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.309.7108&rep=rep1&type=pdf

维基百科文章https://en.wikipedia.org/wiki/Floyd%E2%80%93Rivest_algorithm

我尝试在c++中实现快速选择和FR算法。我还将它们与标准c++库实现std::nth_element(基本上是quickselect和heapselect的introselect混合)进行了比较。结果是快速选择和nth_element的平均运行,而FR算法的平均运行约。速度是它们的两倍。

我用于FR算法的示例代码:

template <typename T>
T FRselect(std::vector<T>& data, const size_t& n)
{
    if (n == 0)
        return *(std::min_element(data.begin(), data.end()));
    else if (n == data.size() - 1)
        return *(std::max_element(data.begin(), data.end()));
    else
        return _FRselect(data, 0, data.size() - 1, n);
}

template <typename T>
T _FRselect(std::vector<T>& data, const size_t& left, const size_t& right, const size_t& n)
{
    size_t leftIdx = left;
    size_t rightIdx = right;

    while (rightIdx > leftIdx)
    {
        if (rightIdx - leftIdx > 600)
        {
            size_t range = rightIdx - leftIdx + 1;
            long long i = n - (long long)leftIdx + 1;
            long long z = log(range);
            long long s = 0.5 * exp(2 * z / 3);
            long long sd = 0.5 * sqrt(z * s * (range - s) / range) * sgn(i - (long long)range / 2);

            size_t newLeft = fmax(leftIdx, n - i * s / range + sd);
            size_t newRight = fmin(rightIdx, n + (range - i) * s / range + sd);

            _FRselect(data, newLeft, newRight, n);
        }
        T t = data[n];
        size_t i = leftIdx;
        size_t j = rightIdx;
        // arrange pivot and right index
        std::swap(data[leftIdx], data[n]);
        if (data[rightIdx] > t)
            std::swap(data[rightIdx], data[leftIdx]);

        while (i < j)
        {
            std::swap(data[i], data[j]);
            ++i; --j;
            while (data[i] < t) ++i;
            while (data[j] > t) --j;
        }

        if (data[leftIdx] == t)
            std::swap(data[leftIdx], data[j]);
        else
        {
            ++j;
            std::swap(data[j], data[rightIdx]);
        }
        // adjust left and right towards the boundaries of the subset
        // containing the (k - left + 1)th smallest element
        if (j <= n)
            leftIdx = j + 1;
        if (n <= j)
            rightIdx = j - 1;
    }

    return data[leftIdx];
}

template <typename T>
int sgn(T val) {
    return (T(0) < val) - (val < T(0));
}

    function nthMax(arr, nth = 1, maxNumber = Infinity) {
      let large = -Infinity;
      for(e of arr) {
        if(e > large && e < maxNumber ) {
          large = e;
        } else if (maxNumber == large) {
          nth++;
        }
      }
      return nth==0 ? maxNumber: nthMax(arr, nth-1, large);
    }

    let array = [11,12,12,34,23,34];

    let secondlargest = nthMax(array, 1);

    console.log("Number:", secondlargest);