我相信有一种方法可以找到长度为n的O(n)无序数组中第k大的元素。也可能是期望O(n)之类的。我们该怎么做呢?
当前回答
在线性时间内找到数组的中值,然后使用与快速排序完全相同的划分程序将数组分为两部分,中值左边的值小于(<)中值,右边的值大于(>)中值,这也可以在线性时间内完成,现在,找到数组中第k个元素所在的部分, 现在递归式变成: T(n) = T(n/2) + cn 得到O (n) /。
其他回答
中位数中位数算法的解释可以在这里找到n中第k大的整数: http://cs.indstate.edu/~spitla/presentation.pdf
c++中的实现如下:
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
int findMedian(vector<int> vec){
// Find median of a vector
int median;
size_t size = vec.size();
median = vec[(size/2)];
return median;
}
int findMedianOfMedians(vector<vector<int> > values){
vector<int> medians;
for (int i = 0; i < values.size(); i++) {
int m = findMedian(values[i]);
medians.push_back(m);
}
return findMedian(medians);
}
void selectionByMedianOfMedians(const vector<int> values, int k){
// Divide the list into n/5 lists of 5 elements each
vector<vector<int> > vec2D;
int count = 0;
while (count != values.size()) {
int countRow = 0;
vector<int> row;
while ((countRow < 5) && (count < values.size())) {
row.push_back(values[count]);
count++;
countRow++;
}
vec2D.push_back(row);
}
cout<<endl<<endl<<"Printing 2D vector : "<<endl;
for (int i = 0; i < vec2D.size(); i++) {
for (int j = 0; j < vec2D[i].size(); j++) {
cout<<vec2D[i][j]<<" ";
}
cout<<endl;
}
cout<<endl;
// Calculating a new pivot for making splits
int m = findMedianOfMedians(vec2D);
cout<<"Median of medians is : "<<m<<endl;
// Partition the list into unique elements larger than 'm' (call this sublist L1) and
// those smaller them 'm' (call this sublist L2)
vector<int> L1, L2;
for (int i = 0; i < vec2D.size(); i++) {
for (int j = 0; j < vec2D[i].size(); j++) {
if (vec2D[i][j] > m) {
L1.push_back(vec2D[i][j]);
}else if (vec2D[i][j] < m){
L2.push_back(vec2D[i][j]);
}
}
}
// Checking the splits as per the new pivot 'm'
cout<<endl<<"Printing L1 : "<<endl;
for (int i = 0; i < L1.size(); i++) {
cout<<L1[i]<<" ";
}
cout<<endl<<endl<<"Printing L2 : "<<endl;
for (int i = 0; i < L2.size(); i++) {
cout<<L2[i]<<" ";
}
// Recursive calls
if ((k - 1) == L1.size()) {
cout<<endl<<endl<<"Answer :"<<m;
}else if (k <= L1.size()) {
return selectionByMedianOfMedians(L1, k);
}else if (k > (L1.size() + 1)){
return selectionByMedianOfMedians(L2, k-((int)L1.size())-1);
}
}
int main()
{
int values[] = {2, 3, 5, 4, 1, 12, 11, 13, 16, 7, 8, 6, 10, 9, 17, 15, 19, 20, 18, 23, 21, 22, 25, 24, 14};
vector<int> vec(values, values + 25);
cout<<"The given array is : "<<endl;
for (int i = 0; i < vec.size(); i++) {
cout<<vec[i]<<" ";
}
selectionByMedianOfMedians(vec, 8);
return 0;
}
我会这样做:
initialize empty doubly linked list l
for each element e in array
if e larger than head(l)
make e the new head of l
if size(l) > k
remove last element from l
the last element of l should now be the kth largest element
您可以简单地存储指向链表中第一个和最后一个元素的指针。它们只在更新列表时更改。
更新:
initialize empty sorted tree l
for each element e in array
if e between head(l) and tail(l)
insert e into l // O(log k)
if size(l) > k
remove last element from l
the last element of l should now be the kth largest element
你确实喜欢快速排序。随机选择一个元素,然后将所有元素推高或推低。此时,您将知道您实际选择了哪个元素,如果它是第k个元素,您就完成了,否则您将重复bin(更高或更低),第k个元素将落在其中。从统计学上讲,找到第k个元素所需的时间随着n, O(n)而增加。
这叫做求k阶统计量。有一个非常简单的随机算法(叫做quickselect),平均时间为O(n),最坏情况时间为O(n²),还有一个相当复杂的非随机算法(叫做introselect),最坏情况时间为O(n)。维基百科上有一些信息,但不是很好。
你需要的一切都在这些幻灯片里。只需提取O(n)最坏情况算法(introselect)的基本算法:
Select(A,n,i):
Divide input into ⌈n/5⌉ groups of size 5.
/* Partition on median-of-medians */
medians = array of each group’s median.
pivot = Select(medians, ⌈n/5⌉, ⌈n/10⌉)
Left Array L and Right Array G = partition(A, pivot)
/* Find ith element in L, pivot, or G */
k = |L| + 1
If i = k, return pivot
If i < k, return Select(L, k-1, i)
If i > k, return Select(G, n-k, i-k)
在Cormen等人的《算法介绍》一书中也有非常详细的描述。
首先,我们可以从未排序的数组中构建一个BST,它需要O(n)时间,从BST中我们可以找到O(log(n))中第k个最小的元素,它的总计数为O(n)。