我相信有一种方法可以找到长度为n的O(n)无序数组中第k大的元素。也可能是期望O(n)之类的。我们该怎么做呢?
当前回答
Haskell的解决方案:
kthElem index list = sort list !! index
withShape ~[] [] = []
withShape ~(x:xs) (y:ys) = x : withShape xs ys
sort [] = []
sort (x:xs) = (sort ls `withShape` ls) ++ [x] ++ (sort rs `withShape` rs)
where
ls = filter (< x)
rs = filter (>= x)
这通过使用withShape方法来实现中值解的中值,从而发现分区的大小,而无需实际计算分区大小。
其他回答
function nthMax(arr, nth = 1, maxNumber = Infinity) {
let large = -Infinity;
for(e of arr) {
if(e > large && e < maxNumber ) {
large = e;
} else if (maxNumber == large) {
nth++;
}
}
return nth==0 ? maxNumber: nthMax(arr, nth-1, large);
}
let array = [11,12,12,34,23,34];
let secondlargest = nthMax(array, 1);
console.log("Number:", secondlargest);
你可以用O(n + kn) = O(n)(对于常数k)表示时间,用O(k)表示空间,通过跟踪你见过的最大的k个元素。
对于数组中的每个元素,您可以扫描k个最大的元素列表,并将最小的元素替换为更大的新元素。
Warren的优先级堆解决方案更简洁。
Haskell的解决方案:
kthElem index list = sort list !! index
withShape ~[] [] = []
withShape ~(x:xs) (y:ys) = x : withShape xs ys
sort [] = []
sort (x:xs) = (sort ls `withShape` ls) ++ [x] ++ (sort rs `withShape` rs)
where
ls = filter (< x)
rs = filter (>= x)
这通过使用withShape方法来实现中值解的中值,从而发现分区的大小,而无需实际计算分区大小。
在那个('第k大元素数组')上快速谷歌返回这个:http://discuss.joelonsoftware.com/default.asp?interview.11.509587.17
"Make one pass through tracking the three largest values so far."
(它是专门为3d最大)
这个答案是:
Build a heap/priority queue. O(n)
Pop top element. O(log n)
Pop top element. O(log n)
Pop top element. O(log n)
Total = O(n) + 3 O(log n) = O(n)
还有一种算法,比快速选择算法性能更好。它叫做弗洛伊德-铆钉(FR)算法。
原文:https://doi.org/10.1145/360680.360694
下载版本:http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.309.7108&rep=rep1&type=pdf
维基百科文章https://en.wikipedia.org/wiki/Floyd%E2%80%93Rivest_algorithm
我尝试在c++中实现快速选择和FR算法。我还将它们与标准c++库实现std::nth_element(基本上是quickselect和heapselect的introselect混合)进行了比较。结果是快速选择和nth_element的平均运行,而FR算法的平均运行约。速度是它们的两倍。
我用于FR算法的示例代码:
template <typename T>
T FRselect(std::vector<T>& data, const size_t& n)
{
if (n == 0)
return *(std::min_element(data.begin(), data.end()));
else if (n == data.size() - 1)
return *(std::max_element(data.begin(), data.end()));
else
return _FRselect(data, 0, data.size() - 1, n);
}
template <typename T>
T _FRselect(std::vector<T>& data, const size_t& left, const size_t& right, const size_t& n)
{
size_t leftIdx = left;
size_t rightIdx = right;
while (rightIdx > leftIdx)
{
if (rightIdx - leftIdx > 600)
{
size_t range = rightIdx - leftIdx + 1;
long long i = n - (long long)leftIdx + 1;
long long z = log(range);
long long s = 0.5 * exp(2 * z / 3);
long long sd = 0.5 * sqrt(z * s * (range - s) / range) * sgn(i - (long long)range / 2);
size_t newLeft = fmax(leftIdx, n - i * s / range + sd);
size_t newRight = fmin(rightIdx, n + (range - i) * s / range + sd);
_FRselect(data, newLeft, newRight, n);
}
T t = data[n];
size_t i = leftIdx;
size_t j = rightIdx;
// arrange pivot and right index
std::swap(data[leftIdx], data[n]);
if (data[rightIdx] > t)
std::swap(data[rightIdx], data[leftIdx]);
while (i < j)
{
std::swap(data[i], data[j]);
++i; --j;
while (data[i] < t) ++i;
while (data[j] > t) --j;
}
if (data[leftIdx] == t)
std::swap(data[leftIdx], data[j]);
else
{
++j;
std::swap(data[j], data[rightIdx]);
}
// adjust left and right towards the boundaries of the subset
// containing the (k - left + 1)th smallest element
if (j <= n)
leftIdx = j + 1;
if (n <= j)
rightIdx = j - 1;
}
return data[leftIdx];
}
template <typename T>
int sgn(T val) {
return (T(0) < val) - (val < T(0));
}