我相信有一种方法可以找到长度为n的O(n)无序数组中第k大的元素。也可能是期望O(n)之类的。我们该怎么做呢?


当前回答

Haskell的解决方案:

kthElem index list = sort list !! index

withShape ~[]     []     = []
withShape ~(x:xs) (y:ys) = x : withShape xs ys

sort []     = []
sort (x:xs) = (sort ls `withShape` ls) ++ [x] ++ (sort rs `withShape` rs)
  where
   ls = filter (<  x)
   rs = filter (>= x)

这通过使用withShape方法来实现中值解的中值,从而发现分区的大小,而无需实际计算分区大小。

其他回答

Python中性感的快速选择

def quickselect(arr, k):
    '''
     k = 1 returns first element in ascending order.
     can be easily modified to return first element in descending order
    '''

    r = random.randrange(0, len(arr))

    a1 = [i for i in arr if i < arr[r]] '''partition'''
    a2 = [i for i in arr if i > arr[r]]

    if k <= len(a1):
        return quickselect(a1, k)
    elif k > len(arr)-len(a2):
        return quickselect(a2, k - (len(arr) - len(a2)))
    else:
        return arr[r]

我提出了这个算法,似乎是O(n):

假设k=3我们想找出数组中第三大的元素。我将创建三个变量,并将数组中的每一项与这三个变量中的最小值进行比较。如果数组item大于最小值,则用item的值替换最小值变量。我们继续做同样的事情,直到数组结束。三个变量中的最小值是数组中第三大的项。

define variables a=0, b=0, c=0
iterate through the array items
    find minimum a,b,c
    if item > min then replace the min variable with item value
    continue until end of array
the minimum of a,b,c is our answer

为了找到第K大的项,我们需要K个变量。

例如:(k = 3)

[1,2,4,1,7,3,9,5,6,2,9,8]

Final variable values:

a=7 (answer)
b=8
c=9

有人可以审查这个,让我知道我错过了什么?

我会这样做:

initialize empty doubly linked list l
for each element e in array
    if e larger than head(l)
        make e the new head of l
        if size(l) > k
            remove last element from l

the last element of l should now be the kth largest element

您可以简单地存储指向链表中第一个和最后一个元素的指针。它们只在更新列表时更改。

更新:

initialize empty sorted tree l
for each element e in array
    if e between head(l) and tail(l)
        insert e into l // O(log k)
        if size(l) > k
            remove last element from l

the last element of l should now be the kth largest element

Haskell的解决方案:

kthElem index list = sort list !! index

withShape ~[]     []     = []
withShape ~(x:xs) (y:ys) = x : withShape xs ys

sort []     = []
sort (x:xs) = (sort ls `withShape` ls) ++ [x] ++ (sort rs `withShape` rs)
  where
   ls = filter (<  x)
   rs = filter (>= x)

这通过使用withShape方法来实现中值解的中值,从而发现分区的大小,而无需实际计算分区大小。

首先,我们可以从未排序的数组中构建一个BST,它需要O(n)时间,从BST中我们可以找到O(log(n))中第k个最小的元素,它的总计数为O(n)。