我相信有一种方法可以找到长度为n的O(n)无序数组中第k大的元素。也可能是期望O(n)之类的。我们该怎么做呢?


当前回答

    function nthMax(arr, nth = 1, maxNumber = Infinity) {
      let large = -Infinity;
      for(e of arr) {
        if(e > large && e < maxNumber ) {
          large = e;
        } else if (maxNumber == large) {
          nth++;
        }
      }
      return nth==0 ? maxNumber: nthMax(arr, nth-1, large);
    }

    let array = [11,12,12,34,23,34];

    let secondlargest = nthMax(array, 1);

    console.log("Number:", secondlargest);

其他回答

A Programmer's Companion to Algorithm Analysis给出了一个O(n)的版本,尽管作者指出常数因子如此之高,您可能更喜欢简单的排序-列表-然后选择方法。

我已经回答了你的问题:)

下面是eladv建议的算法的实现(我也把随机pivot的实现放在这里):

public class Median {

    public static void main(String[] s) {

        int[] test = {4,18,20,3,7,13,5,8,2,1,15,17,25,30,16};
        System.out.println(selectK(test,8));

        /*
        int n = 100000000;
        int[] test = new int[n];
        for(int i=0; i<test.length; i++)
            test[i] = (int)(Math.random()*test.length);

        long start = System.currentTimeMillis();
        random_selectK(test, test.length/2);
        long end = System.currentTimeMillis();
        System.out.println(end - start);
        */
    }

    public static int random_selectK(int[] a, int k) {
        if(a.length <= 1)
            return a[0];

        int r = (int)(Math.random() * a.length);
        int p = a[r];

        int small = 0, equal = 0, big = 0;
        for(int i=0; i<a.length; i++) {
            if(a[i] < p) small++;
            else if(a[i] == p) equal++;
            else if(a[i] > p) big++;
        }

        if(k <= small) {
            int[] temp = new int[small];
            for(int i=0, j=0; i<a.length; i++)
                if(a[i] < p)
                    temp[j++] = a[i];
            return random_selectK(temp, k);
        }

        else if (k <= small+equal)
            return p;

        else {
            int[] temp = new int[big];
            for(int i=0, j=0; i<a.length; i++)
                if(a[i] > p)
                    temp[j++] = a[i];
            return random_selectK(temp,k-small-equal);
        }
    }

    public static int selectK(int[] a, int k) {
        if(a.length <= 5) {
            Arrays.sort(a);
            return a[k-1];
        }

        int p = median_of_medians(a);

        int small = 0, equal = 0, big = 0;
        for(int i=0; i<a.length; i++) {
            if(a[i] < p) small++;
            else if(a[i] == p) equal++;
            else if(a[i] > p) big++;
        }

        if(k <= small) {
            int[] temp = new int[small];
            for(int i=0, j=0; i<a.length; i++)
                if(a[i] < p)
                    temp[j++] = a[i];
            return selectK(temp, k);
        }

        else if (k <= small+equal)
            return p;

        else {
            int[] temp = new int[big];
            for(int i=0, j=0; i<a.length; i++)
                if(a[i] > p)
                    temp[j++] = a[i];
            return selectK(temp,k-small-equal);
        }
    }

    private static int median_of_medians(int[] a) {
        int[] b = new int[a.length/5];
        int[] temp = new int[5];
        for(int i=0; i<b.length; i++) {
            for(int j=0; j<5; j++)
                temp[j] = a[5*i + j];
            Arrays.sort(temp);
            b[i] = temp[2];
        }

        return selectK(b, b.length/2 + 1);
    }
}

Haskell的解决方案:

kthElem index list = sort list !! index

withShape ~[]     []     = []
withShape ~(x:xs) (y:ys) = x : withShape xs ys

sort []     = []
sort (x:xs) = (sort ls `withShape` ls) ++ [x] ++ (sort rs `withShape` rs)
  where
   ls = filter (<  x)
   rs = filter (>= x)

这通过使用withShape方法来实现中值解的中值,从而发现分区的大小,而无需实际计算分区大小。

创建优先级队列。 将所有元素插入堆中。 调用poll() k次。 getKthLargestElements(int[] arr) { PriorityQueue<Integer> pq = new PriorityQueue<>((x, y) -> (y-x)); //将所有元素插入堆中 For (int ele: arr) pq.offer(避署); //调用poll() k次 int i = 0; 而(i&lt; k) { Int result = pq.poll(); } 返回结果; }

你可以用O(n + kn) = O(n)(对于常数k)表示时间,用O(k)表示空间,通过跟踪你见过的最大的k个元素。

对于数组中的每个元素,您可以扫描k个最大的元素列表,并将最小的元素替换为更大的新元素。

Warren的优先级堆解决方案更简洁。