我相信有一种方法可以找到长度为n的O(n)无序数组中第k大的元素。也可能是期望O(n)之类的。我们该怎么做呢?


当前回答

还有Wirth的选择算法,它的实现比QuickSelect简单。Wirth的选择算法比QuickSelect慢,但经过一些改进,它变得更快。

更详细地说。使用Vladimir Zabrodsky的MODIFIND优化和3中位数的枢轴选择,并注意算法划分部分的最后步骤,我提出了以下算法(想象一下,命名为“LefSelect”):

#define F_SWAP(a,b) { float temp=(a);(a)=(b);(b)=temp; }

# Note: The code needs more than 2 elements to work
float lefselect(float a[], const int n, const int k) {
    int l=0, m = n-1, i=l, j=m;
    float x;

    while (l<m) {
        if( a[k] < a[i] ) F_SWAP(a[i],a[k]);
        if( a[j] < a[i] ) F_SWAP(a[i],a[j]);
        if( a[j] < a[k] ) F_SWAP(a[k],a[j]);

        x=a[k];
        while (j>k & i<k) {
            do i++; while (a[i]<x);
            do j--; while (a[j]>x);

            F_SWAP(a[i],a[j]);
        }
        i++; j--;

        if (j<k) {
            while (a[i]<x) i++;
            l=i; j=m;
        }
        if (k<i) {
            while (x<a[j]) j--;
            m=j; i=l;
        }
    }
    return a[k];
}

在我这里做的基准测试中,LefSelect比QuickSelect快20-30%。

其他回答

我提出了这个算法,似乎是O(n):

假设k=3我们想找出数组中第三大的元素。我将创建三个变量,并将数组中的每一项与这三个变量中的最小值进行比较。如果数组item大于最小值,则用item的值替换最小值变量。我们继续做同样的事情,直到数组结束。三个变量中的最小值是数组中第三大的项。

define variables a=0, b=0, c=0
iterate through the array items
    find minimum a,b,c
    if item > min then replace the min variable with item value
    continue until end of array
the minimum of a,b,c is our answer

为了找到第K大的项,我们需要K个变量。

例如:(k = 3)

[1,2,4,1,7,3,9,5,6,2,9,8]

Final variable values:

a=7 (answer)
b=8
c=9

有人可以审查这个,让我知道我错过了什么?

还有一种算法,比快速选择算法性能更好。它叫做弗洛伊德-铆钉(FR)算法。

原文:https://doi.org/10.1145/360680.360694

下载版本:http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.309.7108&rep=rep1&type=pdf

维基百科文章https://en.wikipedia.org/wiki/Floyd%E2%80%93Rivest_algorithm

我尝试在c++中实现快速选择和FR算法。我还将它们与标准c++库实现std::nth_element(基本上是quickselect和heapselect的introselect混合)进行了比较。结果是快速选择和nth_element的平均运行,而FR算法的平均运行约。速度是它们的两倍。

我用于FR算法的示例代码:

template <typename T>
T FRselect(std::vector<T>& data, const size_t& n)
{
    if (n == 0)
        return *(std::min_element(data.begin(), data.end()));
    else if (n == data.size() - 1)
        return *(std::max_element(data.begin(), data.end()));
    else
        return _FRselect(data, 0, data.size() - 1, n);
}

template <typename T>
T _FRselect(std::vector<T>& data, const size_t& left, const size_t& right, const size_t& n)
{
    size_t leftIdx = left;
    size_t rightIdx = right;

    while (rightIdx > leftIdx)
    {
        if (rightIdx - leftIdx > 600)
        {
            size_t range = rightIdx - leftIdx + 1;
            long long i = n - (long long)leftIdx + 1;
            long long z = log(range);
            long long s = 0.5 * exp(2 * z / 3);
            long long sd = 0.5 * sqrt(z * s * (range - s) / range) * sgn(i - (long long)range / 2);

            size_t newLeft = fmax(leftIdx, n - i * s / range + sd);
            size_t newRight = fmin(rightIdx, n + (range - i) * s / range + sd);

            _FRselect(data, newLeft, newRight, n);
        }
        T t = data[n];
        size_t i = leftIdx;
        size_t j = rightIdx;
        // arrange pivot and right index
        std::swap(data[leftIdx], data[n]);
        if (data[rightIdx] > t)
            std::swap(data[rightIdx], data[leftIdx]);

        while (i < j)
        {
            std::swap(data[i], data[j]);
            ++i; --j;
            while (data[i] < t) ++i;
            while (data[j] > t) --j;
        }

        if (data[leftIdx] == t)
            std::swap(data[leftIdx], data[j]);
        else
        {
            ++j;
            std::swap(data[j], data[rightIdx]);
        }
        // adjust left and right towards the boundaries of the subset
        // containing the (k - left + 1)th smallest element
        if (j <= n)
            leftIdx = j + 1;
        if (n <= j)
            rightIdx = j - 1;
    }

    return data[leftIdx];
}

template <typename T>
int sgn(T val) {
    return (T(0) < val) - (val < T(0));
}

你可以用O(n + kn) = O(n)(对于常数k)表示时间,用O(k)表示空间,通过跟踪你见过的最大的k个元素。

对于数组中的每个元素,您可以扫描k个最大的元素列表,并将最小的元素替换为更大的新元素。

Warren的优先级堆解决方案更简洁。

首先,我们可以从未排序的数组中构建一个BST,它需要O(n)时间,从BST中我们可以找到O(log(n))中第k个最小的元素,它的总计数为O(n)。

Haskell的解决方案:

kthElem index list = sort list !! index

withShape ~[]     []     = []
withShape ~(x:xs) (y:ys) = x : withShape xs ys

sort []     = []
sort (x:xs) = (sort ls `withShape` ls) ++ [x] ++ (sort rs `withShape` rs)
  where
   ls = filter (<  x)
   rs = filter (>= x)

这通过使用withShape方法来实现中值解的中值,从而发现分区的大小,而无需实际计算分区大小。