我相信有一种方法可以找到长度为n的O(n)无序数组中第k大的元素。也可能是期望O(n)之类的。我们该怎么做呢?


当前回答

Python中性感的快速选择

def quickselect(arr, k):
    '''
     k = 1 returns first element in ascending order.
     can be easily modified to return first element in descending order
    '''

    r = random.randrange(0, len(arr))

    a1 = [i for i in arr if i < arr[r]] '''partition'''
    a2 = [i for i in arr if i > arr[r]]

    if k <= len(a1):
        return quickselect(a1, k)
    elif k > len(arr)-len(a2):
        return quickselect(a2, k - (len(arr) - len(a2)))
    else:
        return arr[r]

其他回答

遍历列表。如果当前值大于存储的最大值,则将其存储为最大值,并将1-4向下碰撞,5从列表中删除。如果不是,将它与第2条进行比较,然后做同样的事情。重复,检查所有5个存储值。应该是O(n)

Python中性感的快速选择

def quickselect(arr, k):
    '''
     k = 1 returns first element in ascending order.
     can be easily modified to return first element in descending order
    '''

    r = random.randrange(0, len(arr))

    a1 = [i for i in arr if i < arr[r]] '''partition'''
    a2 = [i for i in arr if i > arr[r]]

    if k <= len(a1):
        return quickselect(a1, k)
    elif k > len(arr)-len(a2):
        return quickselect(a2, k - (len(arr) - len(a2)))
    else:
        return arr[r]

在那个('第k大元素数组')上快速谷歌返回这个:http://discuss.joelonsoftware.com/default.asp?interview.11.509587.17

"Make one pass through tracking the three largest values so far." 

(它是专门为3d最大)

这个答案是:

Build a heap/priority queue.  O(n)
Pop top element.  O(log n)
Pop top element.  O(log n)
Pop top element.  O(log n)

Total = O(n) + 3 O(log n) = O(n)

我实现了在n个未排序元素中寻找第k个最小值的动态规划,特别是竞赛方法。执行时间为O(n + klog(n))。所使用的机制在维基百科关于选择算法的页面上被列为方法之一(如上面的帖子之一所示)。你可以阅读算法,也可以在我的博客页面“查找k个最小值”上找到代码(java)。此外,逻辑可以对列表进行部分排序——在O(klog(n))时间内返回第一个K min(或max)。

虽然代码提供了第k个最小值的结果,但可以使用类似的逻辑来查找O(klog(n))中的第k个最大值,忽略创建比赛树的前期工作。

    function nthMax(arr, nth = 1, maxNumber = Infinity) {
      let large = -Infinity;
      for(e of arr) {
        if(e > large && e < maxNumber ) {
          large = e;
        } else if (maxNumber == large) {
          nth++;
        }
      }
      return nth==0 ? maxNumber: nthMax(arr, nth-1, large);
    }

    let array = [11,12,12,34,23,34];

    let secondlargest = nthMax(array, 1);

    console.log("Number:", secondlargest);