我相信有一种方法可以找到长度为n的O(n)无序数组中第k大的元素。也可能是期望O(n)之类的。我们该怎么做呢?
当前回答
它类似于快速排序策略,在快速排序策略中,我们选择一个任意的枢轴,并将较小的元素放在它的左边,将较大的元素放在右边
public static int kthElInUnsortedList(List<int> list, int k)
{
if (list.Count == 1)
return list[0];
List<int> left = new List<int>();
List<int> right = new List<int>();
int pivotIndex = list.Count / 2;
int pivot = list[pivotIndex]; //arbitrary
for (int i = 0; i < list.Count && i != pivotIndex; i++)
{
int currentEl = list[i];
if (currentEl < pivot)
left.Add(currentEl);
else
right.Add(currentEl);
}
if (k == left.Count + 1)
return pivot;
if (left.Count < k)
return kthElInUnsortedList(right, k - left.Count - 1);
else
return kthElInUnsortedList(left, k);
}
其他回答
还有一种算法,比快速选择算法性能更好。它叫做弗洛伊德-铆钉(FR)算法。
原文:https://doi.org/10.1145/360680.360694
下载版本:http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.309.7108&rep=rep1&type=pdf
维基百科文章https://en.wikipedia.org/wiki/Floyd%E2%80%93Rivest_algorithm
我尝试在c++中实现快速选择和FR算法。我还将它们与标准c++库实现std::nth_element(基本上是quickselect和heapselect的introselect混合)进行了比较。结果是快速选择和nth_element的平均运行,而FR算法的平均运行约。速度是它们的两倍。
我用于FR算法的示例代码:
template <typename T>
T FRselect(std::vector<T>& data, const size_t& n)
{
if (n == 0)
return *(std::min_element(data.begin(), data.end()));
else if (n == data.size() - 1)
return *(std::max_element(data.begin(), data.end()));
else
return _FRselect(data, 0, data.size() - 1, n);
}
template <typename T>
T _FRselect(std::vector<T>& data, const size_t& left, const size_t& right, const size_t& n)
{
size_t leftIdx = left;
size_t rightIdx = right;
while (rightIdx > leftIdx)
{
if (rightIdx - leftIdx > 600)
{
size_t range = rightIdx - leftIdx + 1;
long long i = n - (long long)leftIdx + 1;
long long z = log(range);
long long s = 0.5 * exp(2 * z / 3);
long long sd = 0.5 * sqrt(z * s * (range - s) / range) * sgn(i - (long long)range / 2);
size_t newLeft = fmax(leftIdx, n - i * s / range + sd);
size_t newRight = fmin(rightIdx, n + (range - i) * s / range + sd);
_FRselect(data, newLeft, newRight, n);
}
T t = data[n];
size_t i = leftIdx;
size_t j = rightIdx;
// arrange pivot and right index
std::swap(data[leftIdx], data[n]);
if (data[rightIdx] > t)
std::swap(data[rightIdx], data[leftIdx]);
while (i < j)
{
std::swap(data[i], data[j]);
++i; --j;
while (data[i] < t) ++i;
while (data[j] > t) --j;
}
if (data[leftIdx] == t)
std::swap(data[leftIdx], data[j]);
else
{
++j;
std::swap(data[j], data[rightIdx]);
}
// adjust left and right towards the boundaries of the subset
// containing the (k - left + 1)th smallest element
if (j <= n)
leftIdx = j + 1;
if (n <= j)
rightIdx = j - 1;
}
return data[leftIdx];
}
template <typename T>
int sgn(T val) {
return (T(0) < val) - (val < T(0));
}
我提出了这个算法,似乎是O(n):
假设k=3我们想找出数组中第三大的元素。我将创建三个变量,并将数组中的每一项与这三个变量中的最小值进行比较。如果数组item大于最小值,则用item的值替换最小值变量。我们继续做同样的事情,直到数组结束。三个变量中的最小值是数组中第三大的项。
define variables a=0, b=0, c=0
iterate through the array items
find minimum a,b,c
if item > min then replace the min variable with item value
continue until end of array
the minimum of a,b,c is our answer
为了找到第K大的项,我们需要K个变量。
例如:(k = 3)
[1,2,4,1,7,3,9,5,6,2,9,8]
Final variable values:
a=7 (answer)
b=8
c=9
有人可以审查这个,让我知道我错过了什么?
Python中性感的快速选择
def quickselect(arr, k):
'''
k = 1 returns first element in ascending order.
can be easily modified to return first element in descending order
'''
r = random.randrange(0, len(arr))
a1 = [i for i in arr if i < arr[r]] '''partition'''
a2 = [i for i in arr if i > arr[r]]
if k <= len(a1):
return quickselect(a1, k)
elif k > len(arr)-len(a2):
return quickselect(a2, k - (len(arr) - len(a2)))
else:
return arr[r]
我会这样做:
initialize empty doubly linked list l
for each element e in array
if e larger than head(l)
make e the new head of l
if size(l) > k
remove last element from l
the last element of l should now be the kth largest element
您可以简单地存储指向链表中第一个和最后一个元素的指针。它们只在更新列表时更改。
更新:
initialize empty sorted tree l
for each element e in array
if e between head(l) and tail(l)
insert e into l // O(log k)
if size(l) > k
remove last element from l
the last element of l should now be the kth largest element
我想提出一个答案
如果我们取前k个元素并将它们排序成一个k个值的链表
对于每一个其他的值,即使在最坏的情况下如果我们对剩下的n-k个值进行插入排序即使在最坏的情况下,比较的数量也将是k*(n-k)对于前k个要排序的值让它是k*(k-1)所以结果是(nk-k)也就是o(n)
干杯