我相信有一种方法可以找到长度为n的O(n)无序数组中第k大的元素。也可能是期望O(n)之类的。我们该怎么做呢?


当前回答

它类似于快速排序策略,在快速排序策略中,我们选择一个任意的枢轴,并将较小的元素放在它的左边,将较大的元素放在右边

    public static int kthElInUnsortedList(List<int> list, int k)
    {
        if (list.Count == 1)
            return list[0];

        List<int> left = new List<int>();
        List<int> right = new List<int>();

        int pivotIndex = list.Count / 2;
        int pivot = list[pivotIndex]; //arbitrary

        for (int i = 0; i < list.Count && i != pivotIndex; i++)
        {
            int currentEl = list[i];
            if (currentEl < pivot)
                left.Add(currentEl);
            else
                right.Add(currentEl);
        }

        if (k == left.Count + 1)
            return pivot;

        if (left.Count < k)
            return kthElInUnsortedList(right, k - left.Count - 1);
        else
            return kthElInUnsortedList(left, k);
    }

其他回答

遍历列表。如果当前值大于存储的最大值,则将其存储为最大值,并将1-4向下碰撞,5从列表中删除。如果不是,将它与第2条进行比较,然后做同样的事情。重复,检查所有5个存储值。应该是O(n)

在线性时间内找到数组的中值,然后使用与快速排序完全相同的划分程序将数组分为两部分,中值左边的值小于(<)中值,右边的值大于(>)中值,这也可以在线性时间内完成,现在,找到数组中第k个元素所在的部分, 现在递归式变成: T(n) = T(n/2) + cn 得到O (n) /。

下面是一个随机化快速选择的c++实现。这个想法是随机选择一个主元。为了实现随机分区,我们使用一个随机函数rand()来生成l和r之间的索引,将随机生成索引处的元素与最后一个元素交换,最后调用以最后一个元素为枢轴的标准分区过程。

#include<iostream>
#include<climits>
#include<cstdlib>
using namespace std;

int randomPartition(int arr[], int l, int r);

// This function returns k'th smallest element in arr[l..r] using
// QuickSort based method.  ASSUMPTION: ALL ELEMENTS IN ARR[] ARE DISTINCT
int kthSmallest(int arr[], int l, int r, int k)
{
    // If k is smaller than number of elements in array
    if (k > 0 && k <= r - l + 1)
    {
        // Partition the array around a random element and
        // get position of pivot element in sorted array
        int pos = randomPartition(arr, l, r);

        // If position is same as k
        if (pos-l == k-1)
            return arr[pos];
        if (pos-l > k-1)  // If position is more, recur for left subarray
            return kthSmallest(arr, l, pos-1, k);

        // Else recur for right subarray
        return kthSmallest(arr, pos+1, r, k-pos+l-1);
    }

    // If k is more than number of elements in array
    return INT_MAX;
}

void swap(int *a, int *b)
{
    int temp = *a;
    *a = *b;
    *b = temp;
}

// Standard partition process of QuickSort().  It considers the last
// element as pivot and moves all smaller element to left of it and
// greater elements to right. This function is used by randomPartition()
int partition(int arr[], int l, int r)
{
    int x = arr[r], i = l;
    for (int j = l; j <= r - 1; j++)
    {
        if (arr[j] <= x) //arr[i] is bigger than arr[j] so swap them
        {
            swap(&arr[i], &arr[j]);
            i++;
        }
    }
    swap(&arr[i], &arr[r]); // swap the pivot
    return i;
}

// Picks a random pivot element between l and r and partitions
// arr[l..r] around the randomly picked element using partition()
int randomPartition(int arr[], int l, int r)
{
    int n = r-l+1;
    int pivot = rand() % n;
    swap(&arr[l + pivot], &arr[r]);
    return partition(arr, l, r);
}

// Driver program to test above methods
int main()
{
    int arr[] = {12, 3, 5, 7, 4, 19, 26};
    int n = sizeof(arr)/sizeof(arr[0]), k = 3;
    cout << "K'th smallest element is " << kthSmallest(arr, 0, n-1, k);
    return 0;
}

上述解的最坏情况时间复杂度仍为O(n2)。在最坏的情况下,随机函数可能总是选择一个角元素。上述随机化QuickSelect的期望时间复杂度为Θ(n)

我实现了在n个未排序元素中寻找第k个最小值的动态规划,特别是竞赛方法。执行时间为O(n + klog(n))。所使用的机制在维基百科关于选择算法的页面上被列为方法之一(如上面的帖子之一所示)。你可以阅读算法,也可以在我的博客页面“查找k个最小值”上找到代码(java)。此外,逻辑可以对列表进行部分排序——在O(klog(n))时间内返回第一个K min(或max)。

虽然代码提供了第k个最小值的结果,但可以使用类似的逻辑来查找O(klog(n))中的第k个最大值,忽略创建比赛树的前期工作。

创建优先级队列。 将所有元素插入堆中。 调用poll() k次。 getKthLargestElements(int[] arr) { PriorityQueue<Integer> pq = new PriorityQueue<>((x, y) -> (y-x)); //将所有元素插入堆中 For (int ele: arr) pq.offer(避署); //调用poll() k次 int i = 0; 而(i&lt; k) { Int result = pq.poll(); } 返回结果; }