我相信有一种方法可以找到长度为n的O(n)无序数组中第k大的元素。也可能是期望O(n)之类的。我们该怎么做呢?


当前回答

下面是完整实现的链接,其中相当广泛地解释了在无序算法中查找第k个元素的算法是如何工作的。基本思想是像快速排序一样对数组进行分区。但为了避免极端情况(例如每一步都选择最小的元素作为主元,使算法运行时间退化为O(n^2)),采用特殊的主元选择,称为中位数的中位数算法。在最坏情况和平均情况下,整个解在O(n)时间内运行。

这里是全文的链接(它是关于寻找第k个最小的元素,但寻找第k个最大的元素的原理是相同的):

在无序数组中寻找第k个最小元素

其他回答

我会这样做:

initialize empty doubly linked list l
for each element e in array
    if e larger than head(l)
        make e the new head of l
        if size(l) > k
            remove last element from l

the last element of l should now be the kth largest element

您可以简单地存储指向链表中第一个和最后一个元素的指针。它们只在更新列表时更改。

更新:

initialize empty sorted tree l
for each element e in array
    if e between head(l) and tail(l)
        insert e into l // O(log k)
        if size(l) > k
            remove last element from l

the last element of l should now be the kth largest element

下面是eladv建议的算法的实现(我也把随机pivot的实现放在这里):

public class Median {

    public static void main(String[] s) {

        int[] test = {4,18,20,3,7,13,5,8,2,1,15,17,25,30,16};
        System.out.println(selectK(test,8));

        /*
        int n = 100000000;
        int[] test = new int[n];
        for(int i=0; i<test.length; i++)
            test[i] = (int)(Math.random()*test.length);

        long start = System.currentTimeMillis();
        random_selectK(test, test.length/2);
        long end = System.currentTimeMillis();
        System.out.println(end - start);
        */
    }

    public static int random_selectK(int[] a, int k) {
        if(a.length <= 1)
            return a[0];

        int r = (int)(Math.random() * a.length);
        int p = a[r];

        int small = 0, equal = 0, big = 0;
        for(int i=0; i<a.length; i++) {
            if(a[i] < p) small++;
            else if(a[i] == p) equal++;
            else if(a[i] > p) big++;
        }

        if(k <= small) {
            int[] temp = new int[small];
            for(int i=0, j=0; i<a.length; i++)
                if(a[i] < p)
                    temp[j++] = a[i];
            return random_selectK(temp, k);
        }

        else if (k <= small+equal)
            return p;

        else {
            int[] temp = new int[big];
            for(int i=0, j=0; i<a.length; i++)
                if(a[i] > p)
                    temp[j++] = a[i];
            return random_selectK(temp,k-small-equal);
        }
    }

    public static int selectK(int[] a, int k) {
        if(a.length <= 5) {
            Arrays.sort(a);
            return a[k-1];
        }

        int p = median_of_medians(a);

        int small = 0, equal = 0, big = 0;
        for(int i=0; i<a.length; i++) {
            if(a[i] < p) small++;
            else if(a[i] == p) equal++;
            else if(a[i] > p) big++;
        }

        if(k <= small) {
            int[] temp = new int[small];
            for(int i=0, j=0; i<a.length; i++)
                if(a[i] < p)
                    temp[j++] = a[i];
            return selectK(temp, k);
        }

        else if (k <= small+equal)
            return p;

        else {
            int[] temp = new int[big];
            for(int i=0, j=0; i<a.length; i++)
                if(a[i] > p)
                    temp[j++] = a[i];
            return selectK(temp,k-small-equal);
        }
    }

    private static int median_of_medians(int[] a) {
        int[] b = new int[a.length/5];
        int[] temp = new int[5];
        for(int i=0; i<b.length; i++) {
            for(int j=0; j<5; j++)
                temp[j] = a[5*i + j];
            Arrays.sort(temp);
            b[i] = temp[2];
        }

        return selectK(b, b.length/2 + 1);
    }
}

还有Wirth的选择算法,它的实现比QuickSelect简单。Wirth的选择算法比QuickSelect慢,但经过一些改进,它变得更快。

更详细地说。使用Vladimir Zabrodsky的MODIFIND优化和3中位数的枢轴选择,并注意算法划分部分的最后步骤,我提出了以下算法(想象一下,命名为“LefSelect”):

#define F_SWAP(a,b) { float temp=(a);(a)=(b);(b)=temp; }

# Note: The code needs more than 2 elements to work
float lefselect(float a[], const int n, const int k) {
    int l=0, m = n-1, i=l, j=m;
    float x;

    while (l<m) {
        if( a[k] < a[i] ) F_SWAP(a[i],a[k]);
        if( a[j] < a[i] ) F_SWAP(a[i],a[j]);
        if( a[j] < a[k] ) F_SWAP(a[k],a[j]);

        x=a[k];
        while (j>k & i<k) {
            do i++; while (a[i]<x);
            do j--; while (a[j]>x);

            F_SWAP(a[i],a[j]);
        }
        i++; j--;

        if (j<k) {
            while (a[i]<x) i++;
            l=i; j=m;
        }
        if (k<i) {
            while (x<a[j]) j--;
            m=j; i=l;
        }
    }
    return a[k];
}

在我这里做的基准测试中,LefSelect比QuickSelect快20-30%。

中位数中位数算法的解释可以在这里找到n中第k大的整数: http://cs.indstate.edu/~spitla/presentation.pdf

c++中的实现如下:

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

int findMedian(vector<int> vec){
//    Find median of a vector
    int median;
    size_t size = vec.size();
    median = vec[(size/2)];
    return median;
}

int findMedianOfMedians(vector<vector<int> > values){
    vector<int> medians;

    for (int i = 0; i < values.size(); i++) {
        int m = findMedian(values[i]);
        medians.push_back(m);
    }

    return findMedian(medians);
}

void selectionByMedianOfMedians(const vector<int> values, int k){
//    Divide the list into n/5 lists of 5 elements each
    vector<vector<int> > vec2D;

    int count = 0;
    while (count != values.size()) {
        int countRow = 0;
        vector<int> row;

        while ((countRow < 5) && (count < values.size())) {
            row.push_back(values[count]);
            count++;
            countRow++;
        }
        vec2D.push_back(row);
    }

    cout<<endl<<endl<<"Printing 2D vector : "<<endl;
    for (int i = 0; i < vec2D.size(); i++) {
        for (int j = 0; j < vec2D[i].size(); j++) {
            cout<<vec2D[i][j]<<" ";
        }
        cout<<endl;
    }
    cout<<endl;

//    Calculating a new pivot for making splits
    int m = findMedianOfMedians(vec2D);
    cout<<"Median of medians is : "<<m<<endl;

//    Partition the list into unique elements larger than 'm' (call this sublist L1) and
//    those smaller them 'm' (call this sublist L2)
    vector<int> L1, L2;

    for (int i = 0; i < vec2D.size(); i++) {
        for (int j = 0; j < vec2D[i].size(); j++) {
            if (vec2D[i][j] > m) {
                L1.push_back(vec2D[i][j]);
            }else if (vec2D[i][j] < m){
                L2.push_back(vec2D[i][j]);
            }
        }
    }

//    Checking the splits as per the new pivot 'm'
    cout<<endl<<"Printing L1 : "<<endl;
    for (int i = 0; i < L1.size(); i++) {
        cout<<L1[i]<<" ";
    }

    cout<<endl<<endl<<"Printing L2 : "<<endl;
    for (int i = 0; i < L2.size(); i++) {
        cout<<L2[i]<<" ";
    }

//    Recursive calls
    if ((k - 1) == L1.size()) {
        cout<<endl<<endl<<"Answer :"<<m;
    }else if (k <= L1.size()) {
        return selectionByMedianOfMedians(L1, k);
    }else if (k > (L1.size() + 1)){
        return selectionByMedianOfMedians(L2, k-((int)L1.size())-1);
    }

}

int main()
{
    int values[] = {2, 3, 5, 4, 1, 12, 11, 13, 16, 7, 8, 6, 10, 9, 17, 15, 19, 20, 18, 23, 21, 22, 25, 24, 14};

    vector<int> vec(values, values + 25);

    cout<<"The given array is : "<<endl;
    for (int i = 0; i < vec.size(); i++) {
        cout<<vec[i]<<" ";
    }

    selectionByMedianOfMedians(vec, 8);

    return 0;
}

根据本文,在n个项目的列表中寻找第k个最大的项目,下面的算法在最坏的情况下将花费O(n)时间。

将数组分成n/5个列表,每个列表有5个元素。 求每个5个元素的子数组的中值。 递归地找到所有中位数的中位数,记作M 将数组划分为两个子数组第一个子数组包含大于M的元素,设这个子数组为a1,而其他子数组包含小于M的元素,设这个子数组为a2。 如果k <= |a1|,返回选择(a1,k)。 k−1 = |a1|,返回M。 如果k> |a1| + 1,返回选择(a2,k−a1−1)。

分析:如原文所述:

我们使用中位数将列表分成两部分(前一半, 如果k <= n/2,反之则为后半部分)。这个算法需要 对于某个常数c,递归第一级的时间cn/2 at 下一层(因为我们在大小为n/2的列表中递归),cn/4在 第三层,以此类推。总时间为cn + cn/2 + cn/4 + .... = 2cn = o(n)。

为什么分区大小是5而不是3?

如原文所述:

将列表除以5可以保证最坏情况下70−30的分割。至少 至少一半的中位数大于中位数的中位数 n/5块中的一半至少有3个元素,这就给出了a 3n/10的分割,这意味着另一个分区在最坏情况下是7n/10。 得到T(n) = T(n/5)+T(7n/10)+O(n)由于n/5+7n/10 < 1 最差情况运行时间isO(n)。

现在我尝试将上述算法实现为:

public static int findKthLargestUsingMedian(Integer[] array, int k) {
        // Step 1: Divide the list into n/5 lists of 5 element each.
        int noOfRequiredLists = (int) Math.ceil(array.length / 5.0);
        // Step 2: Find pivotal element aka median of medians.
        int medianOfMedian =  findMedianOfMedians(array, noOfRequiredLists);
        //Now we need two lists split using medianOfMedian as pivot. All elements in list listOne will be grater than medianOfMedian and listTwo will have elements lesser than medianOfMedian.
        List<Integer> listWithGreaterNumbers = new ArrayList<>(); // elements greater than medianOfMedian
        List<Integer> listWithSmallerNumbers = new ArrayList<>(); // elements less than medianOfMedian
        for (Integer element : array) {
            if (element < medianOfMedian) {
                listWithSmallerNumbers.add(element);
            } else if (element > medianOfMedian) {
                listWithGreaterNumbers.add(element);
            }
        }
        // Next step.
        if (k <= listWithGreaterNumbers.size()) return findKthLargestUsingMedian((Integer[]) listWithGreaterNumbers.toArray(new Integer[listWithGreaterNumbers.size()]), k);
        else if ((k - 1) == listWithGreaterNumbers.size()) return medianOfMedian;
        else if (k > (listWithGreaterNumbers.size() + 1)) return findKthLargestUsingMedian((Integer[]) listWithSmallerNumbers.toArray(new Integer[listWithSmallerNumbers.size()]), k-listWithGreaterNumbers.size()-1);
        return -1;
    }

    public static int findMedianOfMedians(Integer[] mainList, int noOfRequiredLists) {
        int[] medians = new int[noOfRequiredLists];
        for (int count = 0; count < noOfRequiredLists; count++) {
            int startOfPartialArray = 5 * count;
            int endOfPartialArray = startOfPartialArray + 5;
            Integer[] partialArray = Arrays.copyOfRange((Integer[]) mainList, startOfPartialArray, endOfPartialArray);
            // Step 2: Find median of each of these sublists.
            int medianIndex = partialArray.length/2;
            medians[count] = partialArray[medianIndex];
        }
        // Step 3: Find median of the medians.
        return medians[medians.length / 2];
    }

为了完成,另一种算法利用优先队列,花费时间O(nlogn)。

public static int findKthLargestUsingPriorityQueue(Integer[] nums, int k) {
        int p = 0;
        int numElements = nums.length;
        // create priority queue where all the elements of nums will be stored
        PriorityQueue<Integer> pq = new PriorityQueue<Integer>();

        // place all the elements of the array to this priority queue
        for (int n : nums) {
            pq.add(n);
        }

        // extract the kth largest element
        while (numElements - k + 1 > 0) {
            p = pq.poll();
            k++;
        }

        return p;
    }

这两个算法都可以被测试为:

public static void main(String[] args) throws IOException {
        Integer[] numbers = new Integer[]{2, 3, 5, 4, 1, 12, 11, 13, 16, 7, 8, 6, 10, 9, 17, 15, 19, 20, 18, 23, 21, 22, 25, 24, 14};
        System.out.println(findKthLargestUsingMedian(numbers, 8));
        System.out.println(findKthLargestUsingPriorityQueue(numbers, 8));
    }

如预期输出为: 18 18