我相信有一种方法可以找到长度为n的O(n)无序数组中第k大的元素。也可能是期望O(n)之类的。我们该怎么做呢?
当前回答
根据本文,在n个项目的列表中寻找第k个最大的项目,下面的算法在最坏的情况下将花费O(n)时间。
将数组分成n/5个列表,每个列表有5个元素。 求每个5个元素的子数组的中值。 递归地找到所有中位数的中位数,记作M 将数组划分为两个子数组第一个子数组包含大于M的元素,设这个子数组为a1,而其他子数组包含小于M的元素,设这个子数组为a2。 如果k <= |a1|,返回选择(a1,k)。 k−1 = |a1|,返回M。 如果k> |a1| + 1,返回选择(a2,k−a1−1)。
分析:如原文所述:
我们使用中位数将列表分成两部分(前一半, 如果k <= n/2,反之则为后半部分)。这个算法需要 对于某个常数c,递归第一级的时间cn/2 at 下一层(因为我们在大小为n/2的列表中递归),cn/4在 第三层,以此类推。总时间为cn + cn/2 + cn/4 + .... = 2cn = o(n)。
为什么分区大小是5而不是3?
如原文所述:
将列表除以5可以保证最坏情况下70−30的分割。至少 至少一半的中位数大于中位数的中位数 n/5块中的一半至少有3个元素,这就给出了a 3n/10的分割,这意味着另一个分区在最坏情况下是7n/10。 得到T(n) = T(n/5)+T(7n/10)+O(n)由于n/5+7n/10 < 1 最差情况运行时间isO(n)。
现在我尝试将上述算法实现为:
public static int findKthLargestUsingMedian(Integer[] array, int k) {
// Step 1: Divide the list into n/5 lists of 5 element each.
int noOfRequiredLists = (int) Math.ceil(array.length / 5.0);
// Step 2: Find pivotal element aka median of medians.
int medianOfMedian = findMedianOfMedians(array, noOfRequiredLists);
//Now we need two lists split using medianOfMedian as pivot. All elements in list listOne will be grater than medianOfMedian and listTwo will have elements lesser than medianOfMedian.
List<Integer> listWithGreaterNumbers = new ArrayList<>(); // elements greater than medianOfMedian
List<Integer> listWithSmallerNumbers = new ArrayList<>(); // elements less than medianOfMedian
for (Integer element : array) {
if (element < medianOfMedian) {
listWithSmallerNumbers.add(element);
} else if (element > medianOfMedian) {
listWithGreaterNumbers.add(element);
}
}
// Next step.
if (k <= listWithGreaterNumbers.size()) return findKthLargestUsingMedian((Integer[]) listWithGreaterNumbers.toArray(new Integer[listWithGreaterNumbers.size()]), k);
else if ((k - 1) == listWithGreaterNumbers.size()) return medianOfMedian;
else if (k > (listWithGreaterNumbers.size() + 1)) return findKthLargestUsingMedian((Integer[]) listWithSmallerNumbers.toArray(new Integer[listWithSmallerNumbers.size()]), k-listWithGreaterNumbers.size()-1);
return -1;
}
public static int findMedianOfMedians(Integer[] mainList, int noOfRequiredLists) {
int[] medians = new int[noOfRequiredLists];
for (int count = 0; count < noOfRequiredLists; count++) {
int startOfPartialArray = 5 * count;
int endOfPartialArray = startOfPartialArray + 5;
Integer[] partialArray = Arrays.copyOfRange((Integer[]) mainList, startOfPartialArray, endOfPartialArray);
// Step 2: Find median of each of these sublists.
int medianIndex = partialArray.length/2;
medians[count] = partialArray[medianIndex];
}
// Step 3: Find median of the medians.
return medians[medians.length / 2];
}
为了完成,另一种算法利用优先队列,花费时间O(nlogn)。
public static int findKthLargestUsingPriorityQueue(Integer[] nums, int k) {
int p = 0;
int numElements = nums.length;
// create priority queue where all the elements of nums will be stored
PriorityQueue<Integer> pq = new PriorityQueue<Integer>();
// place all the elements of the array to this priority queue
for (int n : nums) {
pq.add(n);
}
// extract the kth largest element
while (numElements - k + 1 > 0) {
p = pq.poll();
k++;
}
return p;
}
这两个算法都可以被测试为:
public static void main(String[] args) throws IOException {
Integer[] numbers = new Integer[]{2, 3, 5, 4, 1, 12, 11, 13, 16, 7, 8, 6, 10, 9, 17, 15, 19, 20, 18, 23, 21, 22, 25, 24, 14};
System.out.println(findKthLargestUsingMedian(numbers, 8));
System.out.println(findKthLargestUsingPriorityQueue(numbers, 8));
}
如预期输出为: 18 18
其他回答
我会这样做:
initialize empty doubly linked list l
for each element e in array
if e larger than head(l)
make e the new head of l
if size(l) > k
remove last element from l
the last element of l should now be the kth largest element
您可以简单地存储指向链表中第一个和最后一个元素的指针。它们只在更新列表时更改。
更新:
initialize empty sorted tree l
for each element e in array
if e between head(l) and tail(l)
insert e into l // O(log k)
if size(l) > k
remove last element from l
the last element of l should now be the kth largest element
创建优先级队列。 将所有元素插入堆中。 调用poll() k次。 getKthLargestElements(int[] arr) { PriorityQueue<Integer> pq = new PriorityQueue<>((x, y) -> (y-x)); //将所有元素插入堆中 For (int ele: arr) pq.offer(避署); //调用poll() k次 int i = 0; 而(i< k) { Int result = pq.poll(); } 返回结果; }
如果你想要一个真正的O(n)算法,而不是O(kn)或类似的算法,那么你应该使用快速选择(它基本上是快速排序,你会丢弃你不感兴趣的分区)。我的教授写了一篇很棒的文章,包括运行时分析:(参考)
QuickSelect算法可以快速找到包含n个元素的无序数组中的第k个最小元素。这是一个随机算法,所以我们计算最坏情况下的预期运行时间。
这是算法。
QuickSelect(A, k)
let r be chosen uniformly at random in the range 1 to length(A)
let pivot = A[r]
let A1, A2 be new arrays
# split into a pile A1 of small elements and A2 of big elements
for i = 1 to n
if A[i] < pivot then
append A[i] to A1
else if A[i] > pivot then
append A[i] to A2
else
# do nothing
end for
if k <= length(A1):
# it's in the pile of small elements
return QuickSelect(A1, k)
else if k > length(A) - length(A2)
# it's in the pile of big elements
return QuickSelect(A2, k - (length(A) - length(A2))
else
# it's equal to the pivot
return pivot
这个算法的运行时间是多少?如果对手为我们抛硬币,我们可能会发现主元总是最大的元素,k总是1,给出的运行时间为
T(n) = Theta(n) + T(n-1) = Theta(n2)
但如果选择确实是随机的,则预期运行时间由
T(n) <= Theta(n) + (1/n) ∑i=1 to nT(max(i, n-i-1))
我们做了一个不完全合理的假设递归总是落在A1或A2中较大的那个。
让我们猜测对于某个a T(n) <= an,然后我们得到
T(n)
<= cn + (1/n) ∑i=1 to nT(max(i-1, n-i))
= cn + (1/n) ∑i=1 to floor(n/2) T(n-i) + (1/n) ∑i=floor(n/2)+1 to n T(i)
<= cn + 2 (1/n) ∑i=floor(n/2) to n T(i)
<= cn + 2 (1/n) ∑i=floor(n/2) to n ai
现在我们要用加号右边这个可怕的和来吸收左边的cn。如果我们将其限定为2(1/n)∑i=n/2到n an,我们大致得到2(1/n)(n/2)an = an。但是这个太大了,没有多余的空间来挤进一个cn。让我们用等差级数公式展开和:
∑i=floor(n/2) to n i
= ∑i=1 to n i - ∑i=1 to floor(n/2) i
= n(n+1)/2 - floor(n/2)(floor(n/2)+1)/2
<= n2/2 - (n/4)2/2
= (15/32)n2
我们利用n“足够大”的优势,用更干净(更小)的n/4替换丑陋的地板(n/2)因子。现在我们可以继续
cn + 2 (1/n) ∑i=floor(n/2) to n ai,
<= cn + (2a/n) (15/32) n2
= n (c + (15/16)a)
<= an
提供了> 16c。
得到T(n) = O(n)显然是(n)所以我们得到T(n) = (n)
function nthMax(arr, nth = 1, maxNumber = Infinity) {
let large = -Infinity;
for(e of arr) {
if(e > large && e < maxNumber ) {
large = e;
} else if (maxNumber == large) {
nth++;
}
}
return nth==0 ? maxNumber: nthMax(arr, nth-1, large);
}
let array = [11,12,12,34,23,34];
let secondlargest = nthMax(array, 1);
console.log("Number:", secondlargest);
根据本文,在n个项目的列表中寻找第k个最大的项目,下面的算法在最坏的情况下将花费O(n)时间。
将数组分成n/5个列表,每个列表有5个元素。 求每个5个元素的子数组的中值。 递归地找到所有中位数的中位数,记作M 将数组划分为两个子数组第一个子数组包含大于M的元素,设这个子数组为a1,而其他子数组包含小于M的元素,设这个子数组为a2。 如果k <= |a1|,返回选择(a1,k)。 k−1 = |a1|,返回M。 如果k> |a1| + 1,返回选择(a2,k−a1−1)。
分析:如原文所述:
我们使用中位数将列表分成两部分(前一半, 如果k <= n/2,反之则为后半部分)。这个算法需要 对于某个常数c,递归第一级的时间cn/2 at 下一层(因为我们在大小为n/2的列表中递归),cn/4在 第三层,以此类推。总时间为cn + cn/2 + cn/4 + .... = 2cn = o(n)。
为什么分区大小是5而不是3?
如原文所述:
将列表除以5可以保证最坏情况下70−30的分割。至少 至少一半的中位数大于中位数的中位数 n/5块中的一半至少有3个元素,这就给出了a 3n/10的分割,这意味着另一个分区在最坏情况下是7n/10。 得到T(n) = T(n/5)+T(7n/10)+O(n)由于n/5+7n/10 < 1 最差情况运行时间isO(n)。
现在我尝试将上述算法实现为:
public static int findKthLargestUsingMedian(Integer[] array, int k) {
// Step 1: Divide the list into n/5 lists of 5 element each.
int noOfRequiredLists = (int) Math.ceil(array.length / 5.0);
// Step 2: Find pivotal element aka median of medians.
int medianOfMedian = findMedianOfMedians(array, noOfRequiredLists);
//Now we need two lists split using medianOfMedian as pivot. All elements in list listOne will be grater than medianOfMedian and listTwo will have elements lesser than medianOfMedian.
List<Integer> listWithGreaterNumbers = new ArrayList<>(); // elements greater than medianOfMedian
List<Integer> listWithSmallerNumbers = new ArrayList<>(); // elements less than medianOfMedian
for (Integer element : array) {
if (element < medianOfMedian) {
listWithSmallerNumbers.add(element);
} else if (element > medianOfMedian) {
listWithGreaterNumbers.add(element);
}
}
// Next step.
if (k <= listWithGreaterNumbers.size()) return findKthLargestUsingMedian((Integer[]) listWithGreaterNumbers.toArray(new Integer[listWithGreaterNumbers.size()]), k);
else if ((k - 1) == listWithGreaterNumbers.size()) return medianOfMedian;
else if (k > (listWithGreaterNumbers.size() + 1)) return findKthLargestUsingMedian((Integer[]) listWithSmallerNumbers.toArray(new Integer[listWithSmallerNumbers.size()]), k-listWithGreaterNumbers.size()-1);
return -1;
}
public static int findMedianOfMedians(Integer[] mainList, int noOfRequiredLists) {
int[] medians = new int[noOfRequiredLists];
for (int count = 0; count < noOfRequiredLists; count++) {
int startOfPartialArray = 5 * count;
int endOfPartialArray = startOfPartialArray + 5;
Integer[] partialArray = Arrays.copyOfRange((Integer[]) mainList, startOfPartialArray, endOfPartialArray);
// Step 2: Find median of each of these sublists.
int medianIndex = partialArray.length/2;
medians[count] = partialArray[medianIndex];
}
// Step 3: Find median of the medians.
return medians[medians.length / 2];
}
为了完成,另一种算法利用优先队列,花费时间O(nlogn)。
public static int findKthLargestUsingPriorityQueue(Integer[] nums, int k) {
int p = 0;
int numElements = nums.length;
// create priority queue where all the elements of nums will be stored
PriorityQueue<Integer> pq = new PriorityQueue<Integer>();
// place all the elements of the array to this priority queue
for (int n : nums) {
pq.add(n);
}
// extract the kth largest element
while (numElements - k + 1 > 0) {
p = pq.poll();
k++;
}
return p;
}
这两个算法都可以被测试为:
public static void main(String[] args) throws IOException {
Integer[] numbers = new Integer[]{2, 3, 5, 4, 1, 12, 11, 13, 16, 7, 8, 6, 10, 9, 17, 15, 19, 20, 18, 23, 21, 22, 25, 24, 14};
System.out.println(findKthLargestUsingMedian(numbers, 8));
System.out.println(findKthLargestUsingPriorityQueue(numbers, 8));
}
如预期输出为: 18 18
推荐文章
- 哪些是遗传算法/遗传规划解决方案的好例子?
- 如何在SQL中有效地计数列值的发生?
- 使用curl在PHP中获取HTTP代码
- 确定PHP中是否存在数组键的更快更好的方法是什么?
- 如何在O(n)中找到长度为n的无序数组中的第k大元素?
- 一个用于膨胀/收缩(抵消,缓冲)多边形的算法
- postgresql COUNT(DISTINCT…)非常慢
- 我如何使用Node.js Crypto创建HMAC-SHA1哈希?
- 如何用动态规划确定最长递增子序列?
- 在c++程序中以编程方式检测字节序
- 理解递归
- 段树、区间树、二叉索引树和范围树之间有什么区别?
- 为什么更快地检查字典是否包含键,而不是捕捉异常,以防它不?
- 给定一个数字,找出下一个与原始数字具有完全相同的数字集的更高的数字
- HSL到RGB的颜色转换