我相信有一种方法可以找到长度为n的O(n)无序数组中第k大的元素。也可能是期望O(n)之类的。我们该怎么做呢?


当前回答

中位数中位数算法的解释可以在这里找到n中第k大的整数: http://cs.indstate.edu/~spitla/presentation.pdf

c++中的实现如下:

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

int findMedian(vector<int> vec){
//    Find median of a vector
    int median;
    size_t size = vec.size();
    median = vec[(size/2)];
    return median;
}

int findMedianOfMedians(vector<vector<int> > values){
    vector<int> medians;

    for (int i = 0; i < values.size(); i++) {
        int m = findMedian(values[i]);
        medians.push_back(m);
    }

    return findMedian(medians);
}

void selectionByMedianOfMedians(const vector<int> values, int k){
//    Divide the list into n/5 lists of 5 elements each
    vector<vector<int> > vec2D;

    int count = 0;
    while (count != values.size()) {
        int countRow = 0;
        vector<int> row;

        while ((countRow < 5) && (count < values.size())) {
            row.push_back(values[count]);
            count++;
            countRow++;
        }
        vec2D.push_back(row);
    }

    cout<<endl<<endl<<"Printing 2D vector : "<<endl;
    for (int i = 0; i < vec2D.size(); i++) {
        for (int j = 0; j < vec2D[i].size(); j++) {
            cout<<vec2D[i][j]<<" ";
        }
        cout<<endl;
    }
    cout<<endl;

//    Calculating a new pivot for making splits
    int m = findMedianOfMedians(vec2D);
    cout<<"Median of medians is : "<<m<<endl;

//    Partition the list into unique elements larger than 'm' (call this sublist L1) and
//    those smaller them 'm' (call this sublist L2)
    vector<int> L1, L2;

    for (int i = 0; i < vec2D.size(); i++) {
        for (int j = 0; j < vec2D[i].size(); j++) {
            if (vec2D[i][j] > m) {
                L1.push_back(vec2D[i][j]);
            }else if (vec2D[i][j] < m){
                L2.push_back(vec2D[i][j]);
            }
        }
    }

//    Checking the splits as per the new pivot 'm'
    cout<<endl<<"Printing L1 : "<<endl;
    for (int i = 0; i < L1.size(); i++) {
        cout<<L1[i]<<" ";
    }

    cout<<endl<<endl<<"Printing L2 : "<<endl;
    for (int i = 0; i < L2.size(); i++) {
        cout<<L2[i]<<" ";
    }

//    Recursive calls
    if ((k - 1) == L1.size()) {
        cout<<endl<<endl<<"Answer :"<<m;
    }else if (k <= L1.size()) {
        return selectionByMedianOfMedians(L1, k);
    }else if (k > (L1.size() + 1)){
        return selectionByMedianOfMedians(L2, k-((int)L1.size())-1);
    }

}

int main()
{
    int values[] = {2, 3, 5, 4, 1, 12, 11, 13, 16, 7, 8, 6, 10, 9, 17, 15, 19, 20, 18, 23, 21, 22, 25, 24, 14};

    vector<int> vec(values, values + 25);

    cout<<"The given array is : "<<endl;
    for (int i = 0; i < vec.size(); i++) {
        cout<<vec[i]<<" ";
    }

    selectionByMedianOfMedians(vec, 8);

    return 0;
}

其他回答

还有一种算法,比快速选择算法性能更好。它叫做弗洛伊德-铆钉(FR)算法。

原文:https://doi.org/10.1145/360680.360694

下载版本:http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.309.7108&rep=rep1&type=pdf

维基百科文章https://en.wikipedia.org/wiki/Floyd%E2%80%93Rivest_algorithm

我尝试在c++中实现快速选择和FR算法。我还将它们与标准c++库实现std::nth_element(基本上是quickselect和heapselect的introselect混合)进行了比较。结果是快速选择和nth_element的平均运行,而FR算法的平均运行约。速度是它们的两倍。

我用于FR算法的示例代码:

template <typename T>
T FRselect(std::vector<T>& data, const size_t& n)
{
    if (n == 0)
        return *(std::min_element(data.begin(), data.end()));
    else if (n == data.size() - 1)
        return *(std::max_element(data.begin(), data.end()));
    else
        return _FRselect(data, 0, data.size() - 1, n);
}

template <typename T>
T _FRselect(std::vector<T>& data, const size_t& left, const size_t& right, const size_t& n)
{
    size_t leftIdx = left;
    size_t rightIdx = right;

    while (rightIdx > leftIdx)
    {
        if (rightIdx - leftIdx > 600)
        {
            size_t range = rightIdx - leftIdx + 1;
            long long i = n - (long long)leftIdx + 1;
            long long z = log(range);
            long long s = 0.5 * exp(2 * z / 3);
            long long sd = 0.5 * sqrt(z * s * (range - s) / range) * sgn(i - (long long)range / 2);

            size_t newLeft = fmax(leftIdx, n - i * s / range + sd);
            size_t newRight = fmin(rightIdx, n + (range - i) * s / range + sd);

            _FRselect(data, newLeft, newRight, n);
        }
        T t = data[n];
        size_t i = leftIdx;
        size_t j = rightIdx;
        // arrange pivot and right index
        std::swap(data[leftIdx], data[n]);
        if (data[rightIdx] > t)
            std::swap(data[rightIdx], data[leftIdx]);

        while (i < j)
        {
            std::swap(data[i], data[j]);
            ++i; --j;
            while (data[i] < t) ++i;
            while (data[j] > t) --j;
        }

        if (data[leftIdx] == t)
            std::swap(data[leftIdx], data[j]);
        else
        {
            ++j;
            std::swap(data[j], data[rightIdx]);
        }
        // adjust left and right towards the boundaries of the subset
        // containing the (k - left + 1)th smallest element
        if (j <= n)
            leftIdx = j + 1;
        if (n <= j)
            rightIdx = j - 1;
    }

    return data[leftIdx];
}

template <typename T>
int sgn(T val) {
    return (T(0) < val) - (val < T(0));
}

如果你想要一个真正的O(n)算法,而不是O(kn)或类似的算法,那么你应该使用快速选择(它基本上是快速排序,你会丢弃你不感兴趣的分区)。我的教授写了一篇很棒的文章,包括运行时分析:(参考)

QuickSelect算法可以快速找到包含n个元素的无序数组中的第k个最小元素。这是一个随机算法,所以我们计算最坏情况下的预期运行时间。

这是算法。

QuickSelect(A, k)
  let r be chosen uniformly at random in the range 1 to length(A)
  let pivot = A[r]
  let A1, A2 be new arrays
  # split into a pile A1 of small elements and A2 of big elements
  for i = 1 to n
    if A[i] < pivot then
      append A[i] to A1
    else if A[i] > pivot then
      append A[i] to A2
    else
      # do nothing
  end for
  if k <= length(A1):
    # it's in the pile of small elements
    return QuickSelect(A1, k)
  else if k > length(A) - length(A2)
    # it's in the pile of big elements
    return QuickSelect(A2, k - (length(A) - length(A2))
  else
    # it's equal to the pivot
    return pivot

这个算法的运行时间是多少?如果对手为我们抛硬币,我们可能会发现主元总是最大的元素,k总是1,给出的运行时间为

T(n) = Theta(n) + T(n-1) = Theta(n2)

但如果选择确实是随机的,则预期运行时间由

T(n) <= Theta(n) + (1/n) ∑i=1 to nT(max(i, n-i-1))

我们做了一个不完全合理的假设递归总是落在A1或A2中较大的那个。

让我们猜测对于某个a T(n) <= an,然后我们得到

T(n) 
 <= cn + (1/n) ∑i=1 to nT(max(i-1, n-i))
 = cn + (1/n) ∑i=1 to floor(n/2) T(n-i) + (1/n) ∑i=floor(n/2)+1 to n T(i)
 <= cn + 2 (1/n) ∑i=floor(n/2) to n T(i)
 <= cn + 2 (1/n) ∑i=floor(n/2) to n ai

现在我们要用加号右边这个可怕的和来吸收左边的cn。如果我们将其限定为2(1/n)∑i=n/2到n an,我们大致得到2(1/n)(n/2)an = an。但是这个太大了,没有多余的空间来挤进一个cn。让我们用等差级数公式展开和:

i=floor(n/2) to n i  
 = ∑i=1 to n i - ∑i=1 to floor(n/2) i  
 = n(n+1)/2 - floor(n/2)(floor(n/2)+1)/2  
 <= n2/2 - (n/4)2/2  
 = (15/32)n2

我们利用n“足够大”的优势,用更干净(更小)的n/4替换丑陋的地板(n/2)因子。现在我们可以继续

cn + 2 (1/n) ∑i=floor(n/2) to n ai,
 <= cn + (2a/n) (15/32) n2
 = n (c + (15/16)a)
 <= an

提供了> 16c。

得到T(n) = O(n)显然是(n)所以我们得到T(n) = (n)

首先,我们可以从未排序的数组中构建一个BST,它需要O(n)时间,从BST中我们可以找到O(log(n))中第k个最小的元素,它的总计数为O(n)。

Python中性感的快速选择

def quickselect(arr, k):
    '''
     k = 1 returns first element in ascending order.
     can be easily modified to return first element in descending order
    '''

    r = random.randrange(0, len(arr))

    a1 = [i for i in arr if i < arr[r]] '''partition'''
    a2 = [i for i in arr if i > arr[r]]

    if k <= len(a1):
        return quickselect(a1, k)
    elif k > len(arr)-len(a2):
        return quickselect(a2, k - (len(arr) - len(a2)))
    else:
        return arr[r]

根据本文,在n个项目的列表中寻找第k个最大的项目,下面的算法在最坏的情况下将花费O(n)时间。

将数组分成n/5个列表,每个列表有5个元素。 求每个5个元素的子数组的中值。 递归地找到所有中位数的中位数,记作M 将数组划分为两个子数组第一个子数组包含大于M的元素,设这个子数组为a1,而其他子数组包含小于M的元素,设这个子数组为a2。 如果k <= |a1|,返回选择(a1,k)。 k−1 = |a1|,返回M。 如果k> |a1| + 1,返回选择(a2,k−a1−1)。

分析:如原文所述:

我们使用中位数将列表分成两部分(前一半, 如果k <= n/2,反之则为后半部分)。这个算法需要 对于某个常数c,递归第一级的时间cn/2 at 下一层(因为我们在大小为n/2的列表中递归),cn/4在 第三层,以此类推。总时间为cn + cn/2 + cn/4 + .... = 2cn = o(n)。

为什么分区大小是5而不是3?

如原文所述:

将列表除以5可以保证最坏情况下70−30的分割。至少 至少一半的中位数大于中位数的中位数 n/5块中的一半至少有3个元素,这就给出了a 3n/10的分割,这意味着另一个分区在最坏情况下是7n/10。 得到T(n) = T(n/5)+T(7n/10)+O(n)由于n/5+7n/10 < 1 最差情况运行时间isO(n)。

现在我尝试将上述算法实现为:

public static int findKthLargestUsingMedian(Integer[] array, int k) {
        // Step 1: Divide the list into n/5 lists of 5 element each.
        int noOfRequiredLists = (int) Math.ceil(array.length / 5.0);
        // Step 2: Find pivotal element aka median of medians.
        int medianOfMedian =  findMedianOfMedians(array, noOfRequiredLists);
        //Now we need two lists split using medianOfMedian as pivot. All elements in list listOne will be grater than medianOfMedian and listTwo will have elements lesser than medianOfMedian.
        List<Integer> listWithGreaterNumbers = new ArrayList<>(); // elements greater than medianOfMedian
        List<Integer> listWithSmallerNumbers = new ArrayList<>(); // elements less than medianOfMedian
        for (Integer element : array) {
            if (element < medianOfMedian) {
                listWithSmallerNumbers.add(element);
            } else if (element > medianOfMedian) {
                listWithGreaterNumbers.add(element);
            }
        }
        // Next step.
        if (k <= listWithGreaterNumbers.size()) return findKthLargestUsingMedian((Integer[]) listWithGreaterNumbers.toArray(new Integer[listWithGreaterNumbers.size()]), k);
        else if ((k - 1) == listWithGreaterNumbers.size()) return medianOfMedian;
        else if (k > (listWithGreaterNumbers.size() + 1)) return findKthLargestUsingMedian((Integer[]) listWithSmallerNumbers.toArray(new Integer[listWithSmallerNumbers.size()]), k-listWithGreaterNumbers.size()-1);
        return -1;
    }

    public static int findMedianOfMedians(Integer[] mainList, int noOfRequiredLists) {
        int[] medians = new int[noOfRequiredLists];
        for (int count = 0; count < noOfRequiredLists; count++) {
            int startOfPartialArray = 5 * count;
            int endOfPartialArray = startOfPartialArray + 5;
            Integer[] partialArray = Arrays.copyOfRange((Integer[]) mainList, startOfPartialArray, endOfPartialArray);
            // Step 2: Find median of each of these sublists.
            int medianIndex = partialArray.length/2;
            medians[count] = partialArray[medianIndex];
        }
        // Step 3: Find median of the medians.
        return medians[medians.length / 2];
    }

为了完成,另一种算法利用优先队列,花费时间O(nlogn)。

public static int findKthLargestUsingPriorityQueue(Integer[] nums, int k) {
        int p = 0;
        int numElements = nums.length;
        // create priority queue where all the elements of nums will be stored
        PriorityQueue<Integer> pq = new PriorityQueue<Integer>();

        // place all the elements of the array to this priority queue
        for (int n : nums) {
            pq.add(n);
        }

        // extract the kth largest element
        while (numElements - k + 1 > 0) {
            p = pq.poll();
            k++;
        }

        return p;
    }

这两个算法都可以被测试为:

public static void main(String[] args) throws IOException {
        Integer[] numbers = new Integer[]{2, 3, 5, 4, 1, 12, 11, 13, 16, 7, 8, 6, 10, 9, 17, 15, 19, 20, 18, 23, 21, 22, 25, 24, 14};
        System.out.println(findKthLargestUsingMedian(numbers, 8));
        System.out.println(findKthLargestUsingPriorityQueue(numbers, 8));
    }

如预期输出为: 18 18