我相信有一种方法可以找到长度为n的O(n)无序数组中第k大的元素。也可能是期望O(n)之类的。我们该怎么做呢?
当前回答
对于k非常小的值(即k << n),我们可以在~O(n)时间内完成。否则,如果k与n比较,我们得到O(nlogn)
其他回答
你可以在O(n)个时间和常数空间中找到第k个最小的元素。如果我们认为数组只用于整数。
方法是对数组值的范围进行二分搜索。如果min_value和max_value都在整数范围内,我们可以对该范围进行二分搜索。 我们可以写一个比较器函数,它会告诉我们是否有任何值是第k个最小值或小于第k个最小值或大于第k个最小值。 进行二分搜索,直到找到第k小的数
这是它的代码
类解决方案:
def _iskthsmallest(self, A, val, k):
less_count, equal_count = 0, 0
for i in range(len(A)):
if A[i] == val: equal_count += 1
if A[i] < val: less_count += 1
if less_count >= k: return 1
if less_count + equal_count < k: return -1
return 0
def kthsmallest_binary(self, A, min_val, max_val, k):
if min_val == max_val:
return min_val
mid = (min_val + max_val)/2
iskthsmallest = self._iskthsmallest(A, mid, k)
if iskthsmallest == 0: return mid
if iskthsmallest > 0: return self.kthsmallest_binary(A, min_val, mid, k)
return self.kthsmallest_binary(A, mid+1, max_val, k)
# @param A : tuple of integers
# @param B : integer
# @return an integer
def kthsmallest(self, A, k):
if not A: return 0
if k > len(A): return 0
min_val, max_val = min(A), max(A)
return self.kthsmallest_binary(A, min_val, max_val, k)
还有Wirth的选择算法,它的实现比QuickSelect简单。Wirth的选择算法比QuickSelect慢,但经过一些改进,它变得更快。
更详细地说。使用Vladimir Zabrodsky的MODIFIND优化和3中位数的枢轴选择,并注意算法划分部分的最后步骤,我提出了以下算法(想象一下,命名为“LefSelect”):
#define F_SWAP(a,b) { float temp=(a);(a)=(b);(b)=temp; }
# Note: The code needs more than 2 elements to work
float lefselect(float a[], const int n, const int k) {
int l=0, m = n-1, i=l, j=m;
float x;
while (l<m) {
if( a[k] < a[i] ) F_SWAP(a[i],a[k]);
if( a[j] < a[i] ) F_SWAP(a[i],a[j]);
if( a[j] < a[k] ) F_SWAP(a[k],a[j]);
x=a[k];
while (j>k & i<k) {
do i++; while (a[i]<x);
do j--; while (a[j]>x);
F_SWAP(a[i],a[j]);
}
i++; j--;
if (j<k) {
while (a[i]<x) i++;
l=i; j=m;
}
if (k<i) {
while (x<a[j]) j--;
m=j; i=l;
}
}
return a[k];
}
在我这里做的基准测试中,LefSelect比QuickSelect快20-30%。
遍历列表。如果当前值大于存储的最大值,则将其存储为最大值,并将1-4向下碰撞,5从列表中删除。如果不是,将它与第2条进行比较,然后做同样的事情。重复,检查所有5个存储值。应该是O(n)
在那个('第k大元素数组')上快速谷歌返回这个:http://discuss.joelonsoftware.com/default.asp?interview.11.509587.17
"Make one pass through tracking the three largest values so far."
(它是专门为3d最大)
这个答案是:
Build a heap/priority queue. O(n)
Pop top element. O(log n)
Pop top element. O(log n)
Pop top element. O(log n)
Total = O(n) + 3 O(log n) = O(n)
转到这个链接的结尾:...........
http://www.geeksforgeeks.org/kth-smallestlargest-element-unsorted-array-set-3-worst-case-linear-time/