我相信有一种方法可以找到长度为n的O(n)无序数组中第k大的元素。也可能是期望O(n)之类的。我们该怎么做呢?
当前回答
对于k非常小的值(即k << n),我们可以在~O(n)时间内完成。否则,如果k与n比较,我们得到O(nlogn)
其他回答
我实现了在n个未排序元素中寻找第k个最小值的动态规划,特别是竞赛方法。执行时间为O(n + klog(n))。所使用的机制在维基百科关于选择算法的页面上被列为方法之一(如上面的帖子之一所示)。你可以阅读算法,也可以在我的博客页面“查找k个最小值”上找到代码(java)。此外,逻辑可以对列表进行部分排序——在O(klog(n))时间内返回第一个K min(或max)。
虽然代码提供了第k个最小值的结果,但可以使用类似的逻辑来查找O(klog(n))中的第k个最大值,忽略创建比赛树的前期工作。
这种方法怎么样
保持一个长度为k的缓冲区和一个tmp_max,得到tmp_max为O(k)并执行n次因此类似于O(kn)
是这样还是我漏掉了什么?
虽然它没有击败快速选择的平均情况和中值统计方法的最坏情况,但它非常容易理解和实现。
遍历列表。如果当前值大于存储的最大值,则将其存储为最大值,并将1-4向下碰撞,5从列表中删除。如果不是,将它与第2条进行比较,然后做同样的事情。重复,检查所有5个存储值。应该是O(n)
转到这个链接的结尾:...........
http://www.geeksforgeeks.org/kth-smallestlargest-element-unsorted-array-set-3-worst-case-linear-time/
这叫做求k阶统计量。有一个非常简单的随机算法(叫做quickselect),平均时间为O(n),最坏情况时间为O(n²),还有一个相当复杂的非随机算法(叫做introselect),最坏情况时间为O(n)。维基百科上有一些信息,但不是很好。
你需要的一切都在这些幻灯片里。只需提取O(n)最坏情况算法(introselect)的基本算法:
Select(A,n,i):
Divide input into ⌈n/5⌉ groups of size 5.
/* Partition on median-of-medians */
medians = array of each group’s median.
pivot = Select(medians, ⌈n/5⌉, ⌈n/10⌉)
Left Array L and Right Array G = partition(A, pivot)
/* Find ith element in L, pivot, or G */
k = |L| + 1
If i = k, return pivot
If i < k, return Select(L, k-1, i)
If i > k, return Select(G, n-k, i-k)
在Cormen等人的《算法介绍》一书中也有非常详细的描述。