我相信有一种方法可以找到长度为n的O(n)无序数组中第k大的元素。也可能是期望O(n)之类的。我们该怎么做呢?


当前回答

首先,我们可以从未排序的数组中构建一个BST,它需要O(n)时间,从BST中我们可以找到O(log(n))中第k个最小的元素,它的总计数为O(n)。

其他回答

你可以在O(n)个时间和常数空间中找到第k个最小的元素。如果我们认为数组只用于整数。

方法是对数组值的范围进行二分搜索。如果min_value和max_value都在整数范围内,我们可以对该范围进行二分搜索。 我们可以写一个比较器函数,它会告诉我们是否有任何值是第k个最小值或小于第k个最小值或大于第k个最小值。 进行二分搜索,直到找到第k小的数

这是它的代码

类解决方案:

def _iskthsmallest(self, A, val, k):
    less_count, equal_count = 0, 0
    for i in range(len(A)):
        if A[i] == val: equal_count += 1
        if A[i] < val: less_count += 1

    if less_count >= k: return 1
    if less_count + equal_count < k: return -1
    return 0

def kthsmallest_binary(self, A, min_val, max_val, k):
    if min_val == max_val:
        return min_val
    mid = (min_val + max_val)/2
    iskthsmallest = self._iskthsmallest(A, mid, k)
    if iskthsmallest == 0: return mid
    if iskthsmallest > 0: return self.kthsmallest_binary(A, min_val, mid, k)
    return self.kthsmallest_binary(A, mid+1, max_val, k)

# @param A : tuple of integers
# @param B : integer
# @return an integer
def kthsmallest(self, A, k):
    if not A: return 0
    if k > len(A): return 0
    min_val, max_val = min(A), max(A)
    return self.kthsmallest_binary(A, min_val, max_val, k)

你可以用O(n + kn) = O(n)(对于常数k)表示时间,用O(k)表示空间,通过跟踪你见过的最大的k个元素。

对于数组中的每个元素,您可以扫描k个最大的元素列表,并将最小的元素替换为更大的新元素。

Warren的优先级堆解决方案更简洁。

    function nthMax(arr, nth = 1, maxNumber = Infinity) {
      let large = -Infinity;
      for(e of arr) {
        if(e > large && e < maxNumber ) {
          large = e;
        } else if (maxNumber == large) {
          nth++;
        }
      }
      return nth==0 ? maxNumber: nthMax(arr, nth-1, large);
    }

    let array = [11,12,12,34,23,34];

    let secondlargest = nthMax(array, 1);

    console.log("Number:", secondlargest);

在那个('第k大元素数组')上快速谷歌返回这个:http://discuss.joelonsoftware.com/default.asp?interview.11.509587.17

"Make one pass through tracking the three largest values so far." 

(它是专门为3d最大)

这个答案是:

Build a heap/priority queue.  O(n)
Pop top element.  O(log n)
Pop top element.  O(log n)
Pop top element.  O(log n)

Total = O(n) + 3 O(log n) = O(n)

我提出了这个算法,似乎是O(n):

假设k=3我们想找出数组中第三大的元素。我将创建三个变量,并将数组中的每一项与这三个变量中的最小值进行比较。如果数组item大于最小值,则用item的值替换最小值变量。我们继续做同样的事情,直到数组结束。三个变量中的最小值是数组中第三大的项。

define variables a=0, b=0, c=0
iterate through the array items
    find minimum a,b,c
    if item > min then replace the min variable with item value
    continue until end of array
the minimum of a,b,c is our answer

为了找到第K大的项,我们需要K个变量。

例如:(k = 3)

[1,2,4,1,7,3,9,5,6,2,9,8]

Final variable values:

a=7 (answer)
b=8
c=9

有人可以审查这个,让我知道我错过了什么?