我相信有一种方法可以找到长度为n的O(n)无序数组中第k大的元素。也可能是期望O(n)之类的。我们该怎么做呢?
当前回答
你确实喜欢快速排序。随机选择一个元素,然后将所有元素推高或推低。此时,您将知道您实际选择了哪个元素,如果它是第k个元素,您就完成了,否则您将重复bin(更高或更低),第k个元素将落在其中。从统计学上讲,找到第k个元素所需的时间随着n, O(n)而增加。
其他回答
它类似于快速排序策略,在快速排序策略中,我们选择一个任意的枢轴,并将较小的元素放在它的左边,将较大的元素放在右边
public static int kthElInUnsortedList(List<int> list, int k)
{
if (list.Count == 1)
return list[0];
List<int> left = new List<int>();
List<int> right = new List<int>();
int pivotIndex = list.Count / 2;
int pivot = list[pivotIndex]; //arbitrary
for (int i = 0; i < list.Count && i != pivotIndex; i++)
{
int currentEl = list[i];
if (currentEl < pivot)
left.Add(currentEl);
else
right.Add(currentEl);
}
if (k == left.Count + 1)
return pivot;
if (left.Count < k)
return kthElInUnsortedList(right, k - left.Count - 1);
else
return kthElInUnsortedList(left, k);
}
这是一个Javascript实现。
如果您释放了不能修改数组的约束,则可以使用两个索引来标识“当前分区”(经典快速排序样式- http://www.nczonline.net/blog/2012/11/27/computer-science-in-javascript-quicksort/)来防止使用额外的内存。
function kthMax(a, k){
var size = a.length;
var pivot = a[ parseInt(Math.random()*size) ]; //Another choice could have been (size / 2)
//Create an array with all element lower than the pivot and an array with all element higher than the pivot
var i, lowerArray = [], upperArray = [];
for (i = 0; i < size; i++){
var current = a[i];
if (current < pivot) {
lowerArray.push(current);
} else if (current > pivot) {
upperArray.push(current);
}
}
//Which one should I continue with?
if(k <= upperArray.length) {
//Upper
return kthMax(upperArray, k);
} else {
var newK = k - (size - lowerArray.length);
if (newK > 0) {
///Lower
return kthMax(lowerArray, newK);
} else {
//None ... it's the current pivot!
return pivot;
}
}
}
如果你想测试它的表现,你可以使用这个变量:
function kthMax (a, k, logging) {
var comparisonCount = 0; //Number of comparison that the algorithm uses
var memoryCount = 0; //Number of integers in memory that the algorithm uses
var _log = logging;
if(k < 0 || k >= a.length) {
if (_log) console.log ("k is out of range");
return false;
}
function _kthmax(a, k){
var size = a.length;
var pivot = a[parseInt(Math.random()*size)];
if(_log) console.log("Inputs:", a, "size="+size, "k="+k, "pivot="+pivot);
// This should never happen. Just a nice check in this exercise
// if you are playing with the code to avoid never ending recursion
if(typeof pivot === "undefined") {
if (_log) console.log ("Ops...");
return false;
}
var i, lowerArray = [], upperArray = [];
for (i = 0; i < size; i++){
var current = a[i];
if (current < pivot) {
comparisonCount += 1;
memoryCount++;
lowerArray.push(current);
} else if (current > pivot) {
comparisonCount += 2;
memoryCount++;
upperArray.push(current);
}
}
if(_log) console.log("Pivoting:",lowerArray, "*"+pivot+"*", upperArray);
if(k <= upperArray.length) {
comparisonCount += 1;
return _kthmax(upperArray, k);
} else if (k > size - lowerArray.length) {
comparisonCount += 2;
return _kthmax(lowerArray, k - (size - lowerArray.length));
} else {
comparisonCount += 2;
return pivot;
}
/*
* BTW, this is the logic for kthMin if we want to implement that... ;-)
*
if(k <= lowerArray.length) {
return kthMin(lowerArray, k);
} else if (k > size - upperArray.length) {
return kthMin(upperArray, k - (size - upperArray.length));
} else
return pivot;
*/
}
var result = _kthmax(a, k);
return {result: result, iterations: comparisonCount, memory: memoryCount};
}
剩下的代码只是创建一些游乐场:
function getRandomArray (n){
var ar = [];
for (var i = 0, l = n; i < l; i++) {
ar.push(Math.round(Math.random() * l))
}
return ar;
}
//Create a random array of 50 numbers
var ar = getRandomArray (50);
现在给你做几次测试。 因为Math.random()每次都会产生不同的结果:
kthMax(ar, 2, true);
kthMax(ar, 2);
kthMax(ar, 2);
kthMax(ar, 2);
kthMax(ar, 2);
kthMax(ar, 2);
kthMax(ar, 34, true);
kthMax(ar, 34);
kthMax(ar, 34);
kthMax(ar, 34);
kthMax(ar, 34);
kthMax(ar, 34);
如果你测试它几次,你甚至可以看到经验的迭代次数,平均来说,O(n) ~=常数* n, k的值不会影响算法。
在那个('第k大元素数组')上快速谷歌返回这个:http://discuss.joelonsoftware.com/default.asp?interview.11.509587.17
"Make one pass through tracking the three largest values so far."
(它是专门为3d最大)
这个答案是:
Build a heap/priority queue. O(n)
Pop top element. O(log n)
Pop top element. O(log n)
Pop top element. O(log n)
Total = O(n) + 3 O(log n) = O(n)
这种方法怎么样
保持一个长度为k的缓冲区和一个tmp_max,得到tmp_max为O(k)并执行n次因此类似于O(kn)
是这样还是我漏掉了什么?
虽然它没有击败快速选择的平均情况和中值统计方法的最坏情况,但它非常容易理解和实现。
如果你想要一个真正的O(n)算法,而不是O(kn)或类似的算法,那么你应该使用快速选择(它基本上是快速排序,你会丢弃你不感兴趣的分区)。我的教授写了一篇很棒的文章,包括运行时分析:(参考)
QuickSelect算法可以快速找到包含n个元素的无序数组中的第k个最小元素。这是一个随机算法,所以我们计算最坏情况下的预期运行时间。
这是算法。
QuickSelect(A, k)
let r be chosen uniformly at random in the range 1 to length(A)
let pivot = A[r]
let A1, A2 be new arrays
# split into a pile A1 of small elements and A2 of big elements
for i = 1 to n
if A[i] < pivot then
append A[i] to A1
else if A[i] > pivot then
append A[i] to A2
else
# do nothing
end for
if k <= length(A1):
# it's in the pile of small elements
return QuickSelect(A1, k)
else if k > length(A) - length(A2)
# it's in the pile of big elements
return QuickSelect(A2, k - (length(A) - length(A2))
else
# it's equal to the pivot
return pivot
这个算法的运行时间是多少?如果对手为我们抛硬币,我们可能会发现主元总是最大的元素,k总是1,给出的运行时间为
T(n) = Theta(n) + T(n-1) = Theta(n2)
但如果选择确实是随机的,则预期运行时间由
T(n) <= Theta(n) + (1/n) ∑i=1 to nT(max(i, n-i-1))
我们做了一个不完全合理的假设递归总是落在A1或A2中较大的那个。
让我们猜测对于某个a T(n) <= an,然后我们得到
T(n)
<= cn + (1/n) ∑i=1 to nT(max(i-1, n-i))
= cn + (1/n) ∑i=1 to floor(n/2) T(n-i) + (1/n) ∑i=floor(n/2)+1 to n T(i)
<= cn + 2 (1/n) ∑i=floor(n/2) to n T(i)
<= cn + 2 (1/n) ∑i=floor(n/2) to n ai
现在我们要用加号右边这个可怕的和来吸收左边的cn。如果我们将其限定为2(1/n)∑i=n/2到n an,我们大致得到2(1/n)(n/2)an = an。但是这个太大了,没有多余的空间来挤进一个cn。让我们用等差级数公式展开和:
∑i=floor(n/2) to n i
= ∑i=1 to n i - ∑i=1 to floor(n/2) i
= n(n+1)/2 - floor(n/2)(floor(n/2)+1)/2
<= n2/2 - (n/4)2/2
= (15/32)n2
我们利用n“足够大”的优势,用更干净(更小)的n/4替换丑陋的地板(n/2)因子。现在我们可以继续
cn + 2 (1/n) ∑i=floor(n/2) to n ai,
<= cn + (2a/n) (15/32) n2
= n (c + (15/16)a)
<= an
提供了> 16c。
得到T(n) = O(n)显然是(n)所以我们得到T(n) = (n)