我相信有一种方法可以找到长度为n的O(n)无序数组中第k大的元素。也可能是期望O(n)之类的。我们该怎么做呢?
当前回答
这种方法怎么样
保持一个长度为k的缓冲区和一个tmp_max,得到tmp_max为O(k)并执行n次因此类似于O(kn)
是这样还是我漏掉了什么?
虽然它没有击败快速选择的平均情况和中值统计方法的最坏情况,但它非常容易理解和实现。
其他回答
下面是eladv建议的算法的实现(我也把随机pivot的实现放在这里):
public class Median {
public static void main(String[] s) {
int[] test = {4,18,20,3,7,13,5,8,2,1,15,17,25,30,16};
System.out.println(selectK(test,8));
/*
int n = 100000000;
int[] test = new int[n];
for(int i=0; i<test.length; i++)
test[i] = (int)(Math.random()*test.length);
long start = System.currentTimeMillis();
random_selectK(test, test.length/2);
long end = System.currentTimeMillis();
System.out.println(end - start);
*/
}
public static int random_selectK(int[] a, int k) {
if(a.length <= 1)
return a[0];
int r = (int)(Math.random() * a.length);
int p = a[r];
int small = 0, equal = 0, big = 0;
for(int i=0; i<a.length; i++) {
if(a[i] < p) small++;
else if(a[i] == p) equal++;
else if(a[i] > p) big++;
}
if(k <= small) {
int[] temp = new int[small];
for(int i=0, j=0; i<a.length; i++)
if(a[i] < p)
temp[j++] = a[i];
return random_selectK(temp, k);
}
else if (k <= small+equal)
return p;
else {
int[] temp = new int[big];
for(int i=0, j=0; i<a.length; i++)
if(a[i] > p)
temp[j++] = a[i];
return random_selectK(temp,k-small-equal);
}
}
public static int selectK(int[] a, int k) {
if(a.length <= 5) {
Arrays.sort(a);
return a[k-1];
}
int p = median_of_medians(a);
int small = 0, equal = 0, big = 0;
for(int i=0; i<a.length; i++) {
if(a[i] < p) small++;
else if(a[i] == p) equal++;
else if(a[i] > p) big++;
}
if(k <= small) {
int[] temp = new int[small];
for(int i=0, j=0; i<a.length; i++)
if(a[i] < p)
temp[j++] = a[i];
return selectK(temp, k);
}
else if (k <= small+equal)
return p;
else {
int[] temp = new int[big];
for(int i=0, j=0; i<a.length; i++)
if(a[i] > p)
temp[j++] = a[i];
return selectK(temp,k-small-equal);
}
}
private static int median_of_medians(int[] a) {
int[] b = new int[a.length/5];
int[] temp = new int[5];
for(int i=0; i<b.length; i++) {
for(int j=0; j<5; j++)
temp[j] = a[5*i + j];
Arrays.sort(temp);
b[i] = temp[2];
}
return selectK(b, b.length/2 + 1);
}
}
下面是完整实现的链接,其中相当广泛地解释了在无序算法中查找第k个元素的算法是如何工作的。基本思想是像快速排序一样对数组进行分区。但为了避免极端情况(例如每一步都选择最小的元素作为主元,使算法运行时间退化为O(n^2)),采用特殊的主元选择,称为中位数的中位数算法。在最坏情况和平均情况下,整个解在O(n)时间内运行。
这里是全文的链接(它是关于寻找第k个最小的元素,但寻找第k个最大的元素的原理是相同的):
在无序数组中寻找第k个最小元素
我想提出一个答案
如果我们取前k个元素并将它们排序成一个k个值的链表
对于每一个其他的值,即使在最坏的情况下如果我们对剩下的n-k个值进行插入排序即使在最坏的情况下,比较的数量也将是k*(n-k)对于前k个要排序的值让它是k*(k-1)所以结果是(nk-k)也就是o(n)
干杯
function nthMax(arr, nth = 1, maxNumber = Infinity) {
let large = -Infinity;
for(e of arr) {
if(e > large && e < maxNumber ) {
large = e;
} else if (maxNumber == large) {
nth++;
}
}
return nth==0 ? maxNumber: nthMax(arr, nth-1, large);
}
let array = [11,12,12,34,23,34];
let secondlargest = nthMax(array, 1);
console.log("Number:", secondlargest);
这叫做求k阶统计量。有一个非常简单的随机算法(叫做quickselect),平均时间为O(n),最坏情况时间为O(n²),还有一个相当复杂的非随机算法(叫做introselect),最坏情况时间为O(n)。维基百科上有一些信息,但不是很好。
你需要的一切都在这些幻灯片里。只需提取O(n)最坏情况算法(introselect)的基本算法:
Select(A,n,i):
Divide input into ⌈n/5⌉ groups of size 5.
/* Partition on median-of-medians */
medians = array of each group’s median.
pivot = Select(medians, ⌈n/5⌉, ⌈n/10⌉)
Left Array L and Right Array G = partition(A, pivot)
/* Find ith element in L, pivot, or G */
k = |L| + 1
If i = k, return pivot
If i < k, return Select(L, k-1, i)
If i > k, return Select(G, n-k, i-k)
在Cormen等人的《算法介绍》一书中也有非常详细的描述。