我相信有一种方法可以找到长度为n的O(n)无序数组中第k大的元素。也可能是期望O(n)之类的。我们该怎么做呢?


当前回答

还有一种算法,比快速选择算法性能更好。它叫做弗洛伊德-铆钉(FR)算法。

原文:https://doi.org/10.1145/360680.360694

下载版本:http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.309.7108&rep=rep1&type=pdf

维基百科文章https://en.wikipedia.org/wiki/Floyd%E2%80%93Rivest_algorithm

我尝试在c++中实现快速选择和FR算法。我还将它们与标准c++库实现std::nth_element(基本上是quickselect和heapselect的introselect混合)进行了比较。结果是快速选择和nth_element的平均运行,而FR算法的平均运行约。速度是它们的两倍。

我用于FR算法的示例代码:

template <typename T>
T FRselect(std::vector<T>& data, const size_t& n)
{
    if (n == 0)
        return *(std::min_element(data.begin(), data.end()));
    else if (n == data.size() - 1)
        return *(std::max_element(data.begin(), data.end()));
    else
        return _FRselect(data, 0, data.size() - 1, n);
}

template <typename T>
T _FRselect(std::vector<T>& data, const size_t& left, const size_t& right, const size_t& n)
{
    size_t leftIdx = left;
    size_t rightIdx = right;

    while (rightIdx > leftIdx)
    {
        if (rightIdx - leftIdx > 600)
        {
            size_t range = rightIdx - leftIdx + 1;
            long long i = n - (long long)leftIdx + 1;
            long long z = log(range);
            long long s = 0.5 * exp(2 * z / 3);
            long long sd = 0.5 * sqrt(z * s * (range - s) / range) * sgn(i - (long long)range / 2);

            size_t newLeft = fmax(leftIdx, n - i * s / range + sd);
            size_t newRight = fmin(rightIdx, n + (range - i) * s / range + sd);

            _FRselect(data, newLeft, newRight, n);
        }
        T t = data[n];
        size_t i = leftIdx;
        size_t j = rightIdx;
        // arrange pivot and right index
        std::swap(data[leftIdx], data[n]);
        if (data[rightIdx] > t)
            std::swap(data[rightIdx], data[leftIdx]);

        while (i < j)
        {
            std::swap(data[i], data[j]);
            ++i; --j;
            while (data[i] < t) ++i;
            while (data[j] > t) --j;
        }

        if (data[leftIdx] == t)
            std::swap(data[leftIdx], data[j]);
        else
        {
            ++j;
            std::swap(data[j], data[rightIdx]);
        }
        // adjust left and right towards the boundaries of the subset
        // containing the (k - left + 1)th smallest element
        if (j <= n)
            leftIdx = j + 1;
        if (n <= j)
            rightIdx = j - 1;
    }

    return data[leftIdx];
}

template <typename T>
int sgn(T val) {
    return (T(0) < val) - (val < T(0));
}

其他回答

转到这个链接的结尾:...........

http://www.geeksforgeeks.org/kth-smallestlargest-element-unsorted-array-set-3-worst-case-linear-time/

我想提出一个答案

如果我们取前k个元素并将它们排序成一个k个值的链表

对于每一个其他的值,即使在最坏的情况下如果我们对剩下的n-k个值进行插入排序即使在最坏的情况下,比较的数量也将是k*(n-k)对于前k个要排序的值让它是k*(k-1)所以结果是(nk-k)也就是o(n)

干杯

如果你想要一个真正的O(n)算法,而不是O(kn)或类似的算法,那么你应该使用快速选择(它基本上是快速排序,你会丢弃你不感兴趣的分区)。我的教授写了一篇很棒的文章,包括运行时分析:(参考)

QuickSelect算法可以快速找到包含n个元素的无序数组中的第k个最小元素。这是一个随机算法,所以我们计算最坏情况下的预期运行时间。

这是算法。

QuickSelect(A, k)
  let r be chosen uniformly at random in the range 1 to length(A)
  let pivot = A[r]
  let A1, A2 be new arrays
  # split into a pile A1 of small elements and A2 of big elements
  for i = 1 to n
    if A[i] < pivot then
      append A[i] to A1
    else if A[i] > pivot then
      append A[i] to A2
    else
      # do nothing
  end for
  if k <= length(A1):
    # it's in the pile of small elements
    return QuickSelect(A1, k)
  else if k > length(A) - length(A2)
    # it's in the pile of big elements
    return QuickSelect(A2, k - (length(A) - length(A2))
  else
    # it's equal to the pivot
    return pivot

这个算法的运行时间是多少?如果对手为我们抛硬币,我们可能会发现主元总是最大的元素,k总是1,给出的运行时间为

T(n) = Theta(n) + T(n-1) = Theta(n2)

但如果选择确实是随机的,则预期运行时间由

T(n) <= Theta(n) + (1/n) ∑i=1 to nT(max(i, n-i-1))

我们做了一个不完全合理的假设递归总是落在A1或A2中较大的那个。

让我们猜测对于某个a T(n) <= an,然后我们得到

T(n) 
 <= cn + (1/n) ∑i=1 to nT(max(i-1, n-i))
 = cn + (1/n) ∑i=1 to floor(n/2) T(n-i) + (1/n) ∑i=floor(n/2)+1 to n T(i)
 <= cn + 2 (1/n) ∑i=floor(n/2) to n T(i)
 <= cn + 2 (1/n) ∑i=floor(n/2) to n ai

现在我们要用加号右边这个可怕的和来吸收左边的cn。如果我们将其限定为2(1/n)∑i=n/2到n an,我们大致得到2(1/n)(n/2)an = an。但是这个太大了,没有多余的空间来挤进一个cn。让我们用等差级数公式展开和:

i=floor(n/2) to n i  
 = ∑i=1 to n i - ∑i=1 to floor(n/2) i  
 = n(n+1)/2 - floor(n/2)(floor(n/2)+1)/2  
 <= n2/2 - (n/4)2/2  
 = (15/32)n2

我们利用n“足够大”的优势,用更干净(更小)的n/4替换丑陋的地板(n/2)因子。现在我们可以继续

cn + 2 (1/n) ∑i=floor(n/2) to n ai,
 <= cn + (2a/n) (15/32) n2
 = n (c + (15/16)a)
 <= an

提供了> 16c。

得到T(n) = O(n)显然是(n)所以我们得到T(n) = (n)

在那个('第k大元素数组')上快速谷歌返回这个:http://discuss.joelonsoftware.com/default.asp?interview.11.509587.17

"Make one pass through tracking the three largest values so far." 

(它是专门为3d最大)

这个答案是:

Build a heap/priority queue.  O(n)
Pop top element.  O(log n)
Pop top element.  O(log n)
Pop top element.  O(log n)

Total = O(n) + 3 O(log n) = O(n)
    function nthMax(arr, nth = 1, maxNumber = Infinity) {
      let large = -Infinity;
      for(e of arr) {
        if(e > large && e < maxNumber ) {
          large = e;
        } else if (maxNumber == large) {
          nth++;
        }
      }
      return nth==0 ? maxNumber: nthMax(arr, nth-1, large);
    }

    let array = [11,12,12,34,23,34];

    let secondlargest = nthMax(array, 1);

    console.log("Number:", secondlargest);