我相信有一种方法可以找到长度为n的O(n)无序数组中第k大的元素。也可能是期望O(n)之类的。我们该怎么做呢?


当前回答

c++标准库几乎完全有这个函数调用nth_element,尽管它确实会修改数据。它有线性运行时间,O(N),它也做部分排序。

const int N = ...;
double a[N];
// ... 
const int m = ...; // m < N
nth_element (a, a + m, a + N);
// a[m] contains the mth element in a

其他回答

Python中性感的快速选择

def quickselect(arr, k):
    '''
     k = 1 returns first element in ascending order.
     can be easily modified to return first element in descending order
    '''

    r = random.randrange(0, len(arr))

    a1 = [i for i in arr if i < arr[r]] '''partition'''
    a2 = [i for i in arr if i > arr[r]]

    if k <= len(a1):
        return quickselect(a1, k)
    elif k > len(arr)-len(a2):
        return quickselect(a2, k - (len(arr) - len(a2)))
    else:
        return arr[r]

在那个('第k大元素数组')上快速谷歌返回这个:http://discuss.joelonsoftware.com/default.asp?interview.11.509587.17

"Make one pass through tracking the three largest values so far." 

(它是专门为3d最大)

这个答案是:

Build a heap/priority queue.  O(n)
Pop top element.  O(log n)
Pop top element.  O(log n)
Pop top element.  O(log n)

Total = O(n) + 3 O(log n) = O(n)

创建优先级队列。 将所有元素插入堆中。 调用poll() k次。 getKthLargestElements(int[] arr) { PriorityQueue<Integer> pq = new PriorityQueue<>((x, y) -> (y-x)); //将所有元素插入堆中 For (int ele: arr) pq.offer(避署); //调用poll() k次 int i = 0; 而(i&lt; k) { Int result = pq.poll(); } 返回结果; }

这是一个Javascript实现。

如果您释放了不能修改数组的约束,则可以使用两个索引来标识“当前分区”(经典快速排序样式- http://www.nczonline.net/blog/2012/11/27/computer-science-in-javascript-quicksort/)来防止使用额外的内存。

function kthMax(a, k){
    var size = a.length;

    var pivot = a[ parseInt(Math.random()*size) ]; //Another choice could have been (size / 2) 

    //Create an array with all element lower than the pivot and an array with all element higher than the pivot
    var i, lowerArray = [], upperArray = [];
    for (i = 0; i  < size; i++){
        var current = a[i];

        if (current < pivot) {
            lowerArray.push(current);
        } else if (current > pivot) {
            upperArray.push(current);
        }
    }

    //Which one should I continue with?
    if(k <= upperArray.length) {
        //Upper
        return kthMax(upperArray, k);
    } else {
        var newK = k - (size - lowerArray.length);

        if (newK > 0) {
            ///Lower
            return kthMax(lowerArray, newK);
        } else {
            //None ... it's the current pivot!
            return pivot;
        }   
    }
}  

如果你想测试它的表现,你可以使用这个变量:

    function kthMax (a, k, logging) {
         var comparisonCount = 0; //Number of comparison that the algorithm uses
         var memoryCount = 0;     //Number of integers in memory that the algorithm uses
         var _log = logging;

         if(k < 0 || k >= a.length) {
            if (_log) console.log ("k is out of range"); 
            return false;
         }      

         function _kthmax(a, k){
             var size = a.length;
             var pivot = a[parseInt(Math.random()*size)];
             if(_log) console.log("Inputs:", a,  "size="+size, "k="+k, "pivot="+pivot);

             // This should never happen. Just a nice check in this exercise
             // if you are playing with the code to avoid never ending recursion            
             if(typeof pivot === "undefined") {
                 if (_log) console.log ("Ops..."); 
                 return false;
             }

             var i, lowerArray = [], upperArray = [];
             for (i = 0; i  < size; i++){
                 var current = a[i];
                 if (current < pivot) {
                     comparisonCount += 1;
                     memoryCount++;
                     lowerArray.push(current);
                 } else if (current > pivot) {
                     comparisonCount += 2;
                     memoryCount++;
                     upperArray.push(current);
                 }
             }
             if(_log) console.log("Pivoting:",lowerArray, "*"+pivot+"*", upperArray);

             if(k <= upperArray.length) {
                 comparisonCount += 1;
                 return _kthmax(upperArray, k);
             } else if (k > size - lowerArray.length) {
                 comparisonCount += 2;
                 return _kthmax(lowerArray, k - (size - lowerArray.length));
             } else {
                 comparisonCount += 2;
                 return pivot;
             }
     /* 
      * BTW, this is the logic for kthMin if we want to implement that... ;-)
      * 

             if(k <= lowerArray.length) {
                 return kthMin(lowerArray, k);
             } else if (k > size - upperArray.length) {
                 return kthMin(upperArray, k - (size - upperArray.length));
             } else 
                 return pivot;
     */            
         }

         var result = _kthmax(a, k);
         return {result: result, iterations: comparisonCount, memory: memoryCount};
     }

剩下的代码只是创建一些游乐场:

    function getRandomArray (n){
        var ar = [];
        for (var i = 0, l = n; i < l; i++) {
            ar.push(Math.round(Math.random() * l))
        }

        return ar;
    }

    //Create a random array of 50 numbers
    var ar = getRandomArray (50);   

现在给你做几次测试。 因为Math.random()每次都会产生不同的结果:

    kthMax(ar, 2, true);
    kthMax(ar, 2);
    kthMax(ar, 2);
    kthMax(ar, 2);
    kthMax(ar, 2);
    kthMax(ar, 2);
    kthMax(ar, 34, true);
    kthMax(ar, 34);
    kthMax(ar, 34);
    kthMax(ar, 34);
    kthMax(ar, 34);
    kthMax(ar, 34);

如果你测试它几次,你甚至可以看到经验的迭代次数,平均来说,O(n) ~=常数* n, k的值不会影响算法。

根据本文,在n个项目的列表中寻找第k个最大的项目,下面的算法在最坏的情况下将花费O(n)时间。

将数组分成n/5个列表,每个列表有5个元素。 求每个5个元素的子数组的中值。 递归地找到所有中位数的中位数,记作M 将数组划分为两个子数组第一个子数组包含大于M的元素,设这个子数组为a1,而其他子数组包含小于M的元素,设这个子数组为a2。 如果k <= |a1|,返回选择(a1,k)。 k−1 = |a1|,返回M。 如果k> |a1| + 1,返回选择(a2,k−a1−1)。

分析:如原文所述:

我们使用中位数将列表分成两部分(前一半, 如果k <= n/2,反之则为后半部分)。这个算法需要 对于某个常数c,递归第一级的时间cn/2 at 下一层(因为我们在大小为n/2的列表中递归),cn/4在 第三层,以此类推。总时间为cn + cn/2 + cn/4 + .... = 2cn = o(n)。

为什么分区大小是5而不是3?

如原文所述:

将列表除以5可以保证最坏情况下70−30的分割。至少 至少一半的中位数大于中位数的中位数 n/5块中的一半至少有3个元素,这就给出了a 3n/10的分割,这意味着另一个分区在最坏情况下是7n/10。 得到T(n) = T(n/5)+T(7n/10)+O(n)由于n/5+7n/10 < 1 最差情况运行时间isO(n)。

现在我尝试将上述算法实现为:

public static int findKthLargestUsingMedian(Integer[] array, int k) {
        // Step 1: Divide the list into n/5 lists of 5 element each.
        int noOfRequiredLists = (int) Math.ceil(array.length / 5.0);
        // Step 2: Find pivotal element aka median of medians.
        int medianOfMedian =  findMedianOfMedians(array, noOfRequiredLists);
        //Now we need two lists split using medianOfMedian as pivot. All elements in list listOne will be grater than medianOfMedian and listTwo will have elements lesser than medianOfMedian.
        List<Integer> listWithGreaterNumbers = new ArrayList<>(); // elements greater than medianOfMedian
        List<Integer> listWithSmallerNumbers = new ArrayList<>(); // elements less than medianOfMedian
        for (Integer element : array) {
            if (element < medianOfMedian) {
                listWithSmallerNumbers.add(element);
            } else if (element > medianOfMedian) {
                listWithGreaterNumbers.add(element);
            }
        }
        // Next step.
        if (k <= listWithGreaterNumbers.size()) return findKthLargestUsingMedian((Integer[]) listWithGreaterNumbers.toArray(new Integer[listWithGreaterNumbers.size()]), k);
        else if ((k - 1) == listWithGreaterNumbers.size()) return medianOfMedian;
        else if (k > (listWithGreaterNumbers.size() + 1)) return findKthLargestUsingMedian((Integer[]) listWithSmallerNumbers.toArray(new Integer[listWithSmallerNumbers.size()]), k-listWithGreaterNumbers.size()-1);
        return -1;
    }

    public static int findMedianOfMedians(Integer[] mainList, int noOfRequiredLists) {
        int[] medians = new int[noOfRequiredLists];
        for (int count = 0; count < noOfRequiredLists; count++) {
            int startOfPartialArray = 5 * count;
            int endOfPartialArray = startOfPartialArray + 5;
            Integer[] partialArray = Arrays.copyOfRange((Integer[]) mainList, startOfPartialArray, endOfPartialArray);
            // Step 2: Find median of each of these sublists.
            int medianIndex = partialArray.length/2;
            medians[count] = partialArray[medianIndex];
        }
        // Step 3: Find median of the medians.
        return medians[medians.length / 2];
    }

为了完成,另一种算法利用优先队列,花费时间O(nlogn)。

public static int findKthLargestUsingPriorityQueue(Integer[] nums, int k) {
        int p = 0;
        int numElements = nums.length;
        // create priority queue where all the elements of nums will be stored
        PriorityQueue<Integer> pq = new PriorityQueue<Integer>();

        // place all the elements of the array to this priority queue
        for (int n : nums) {
            pq.add(n);
        }

        // extract the kth largest element
        while (numElements - k + 1 > 0) {
            p = pq.poll();
            k++;
        }

        return p;
    }

这两个算法都可以被测试为:

public static void main(String[] args) throws IOException {
        Integer[] numbers = new Integer[]{2, 3, 5, 4, 1, 12, 11, 13, 16, 7, 8, 6, 10, 9, 17, 15, 19, 20, 18, 23, 21, 22, 25, 24, 14};
        System.out.println(findKthLargestUsingMedian(numbers, 8));
        System.out.println(findKthLargestUsingPriorityQueue(numbers, 8));
    }

如预期输出为: 18 18