我相信有一种方法可以找到长度为n的O(n)无序数组中第k大的元素。也可能是期望O(n)之类的。我们该怎么做呢?
当前回答
c++标准库几乎完全有这个函数调用nth_element,尽管它确实会修改数据。它有线性运行时间,O(N),它也做部分排序。
const int N = ...;
double a[N];
// ...
const int m = ...; // m < N
nth_element (a, a + m, a + N);
// a[m] contains the mth element in a
其他回答
对于k非常小的值(即k << n),我们可以在~O(n)时间内完成。否则,如果k与n比较,我们得到O(nlogn)
中位数中位数算法的解释可以在这里找到n中第k大的整数: http://cs.indstate.edu/~spitla/presentation.pdf
c++中的实现如下:
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
int findMedian(vector<int> vec){
// Find median of a vector
int median;
size_t size = vec.size();
median = vec[(size/2)];
return median;
}
int findMedianOfMedians(vector<vector<int> > values){
vector<int> medians;
for (int i = 0; i < values.size(); i++) {
int m = findMedian(values[i]);
medians.push_back(m);
}
return findMedian(medians);
}
void selectionByMedianOfMedians(const vector<int> values, int k){
// Divide the list into n/5 lists of 5 elements each
vector<vector<int> > vec2D;
int count = 0;
while (count != values.size()) {
int countRow = 0;
vector<int> row;
while ((countRow < 5) && (count < values.size())) {
row.push_back(values[count]);
count++;
countRow++;
}
vec2D.push_back(row);
}
cout<<endl<<endl<<"Printing 2D vector : "<<endl;
for (int i = 0; i < vec2D.size(); i++) {
for (int j = 0; j < vec2D[i].size(); j++) {
cout<<vec2D[i][j]<<" ";
}
cout<<endl;
}
cout<<endl;
// Calculating a new pivot for making splits
int m = findMedianOfMedians(vec2D);
cout<<"Median of medians is : "<<m<<endl;
// Partition the list into unique elements larger than 'm' (call this sublist L1) and
// those smaller them 'm' (call this sublist L2)
vector<int> L1, L2;
for (int i = 0; i < vec2D.size(); i++) {
for (int j = 0; j < vec2D[i].size(); j++) {
if (vec2D[i][j] > m) {
L1.push_back(vec2D[i][j]);
}else if (vec2D[i][j] < m){
L2.push_back(vec2D[i][j]);
}
}
}
// Checking the splits as per the new pivot 'm'
cout<<endl<<"Printing L1 : "<<endl;
for (int i = 0; i < L1.size(); i++) {
cout<<L1[i]<<" ";
}
cout<<endl<<endl<<"Printing L2 : "<<endl;
for (int i = 0; i < L2.size(); i++) {
cout<<L2[i]<<" ";
}
// Recursive calls
if ((k - 1) == L1.size()) {
cout<<endl<<endl<<"Answer :"<<m;
}else if (k <= L1.size()) {
return selectionByMedianOfMedians(L1, k);
}else if (k > (L1.size() + 1)){
return selectionByMedianOfMedians(L2, k-((int)L1.size())-1);
}
}
int main()
{
int values[] = {2, 3, 5, 4, 1, 12, 11, 13, 16, 7, 8, 6, 10, 9, 17, 15, 19, 20, 18, 23, 21, 22, 25, 24, 14};
vector<int> vec(values, values + 25);
cout<<"The given array is : "<<endl;
for (int i = 0; i < vec.size(); i++) {
cout<<vec[i]<<" ";
}
selectionByMedianOfMedians(vec, 8);
return 0;
}
我提出了这个算法,似乎是O(n):
假设k=3我们想找出数组中第三大的元素。我将创建三个变量,并将数组中的每一项与这三个变量中的最小值进行比较。如果数组item大于最小值,则用item的值替换最小值变量。我们继续做同样的事情,直到数组结束。三个变量中的最小值是数组中第三大的项。
define variables a=0, b=0, c=0
iterate through the array items
find minimum a,b,c
if item > min then replace the min variable with item value
continue until end of array
the minimum of a,b,c is our answer
为了找到第K大的项,我们需要K个变量。
例如:(k = 3)
[1,2,4,1,7,3,9,5,6,2,9,8]
Final variable values:
a=7 (answer)
b=8
c=9
有人可以审查这个,让我知道我错过了什么?
转到这个链接的结尾:...........
http://www.geeksforgeeks.org/kth-smallestlargest-element-unsorted-array-set-3-worst-case-linear-time/
虽然不是很确定O(n)复杂度,但肯定在O(n)和nLog(n)之间。也肯定更接近于O(n)而不是nLog(n)函数是用Java编写的
public int quickSelect(ArrayList<Integer>list, int nthSmallest){
//Choose random number in range of 0 to array length
Random random = new Random();
//This will give random number which is not greater than length - 1
int pivotIndex = random.nextInt(list.size() - 1);
int pivot = list.get(pivotIndex);
ArrayList<Integer> smallerNumberList = new ArrayList<Integer>();
ArrayList<Integer> greaterNumberList = new ArrayList<Integer>();
//Split list into two.
//Value smaller than pivot should go to smallerNumberList
//Value greater than pivot should go to greaterNumberList
//Do nothing for value which is equal to pivot
for(int i=0; i<list.size(); i++){
if(list.get(i)<pivot){
smallerNumberList.add(list.get(i));
}
else if(list.get(i)>pivot){
greaterNumberList.add(list.get(i));
}
else{
//Do nothing
}
}
//If smallerNumberList size is greater than nthSmallest value, nthSmallest number must be in this list
if(nthSmallest < smallerNumberList.size()){
return quickSelect(smallerNumberList, nthSmallest);
}
//If nthSmallest is greater than [ list.size() - greaterNumberList.size() ], nthSmallest number must be in this list
//The step is bit tricky. If confusing, please see the above loop once again for clarification.
else if(nthSmallest > (list.size() - greaterNumberList.size())){
//nthSmallest will have to be changed here. [ list.size() - greaterNumberList.size() ] elements are already in
//smallerNumberList
nthSmallest = nthSmallest - (list.size() - greaterNumberList.size());
return quickSelect(greaterNumberList,nthSmallest);
}
else{
return pivot;
}
}