我在一次面试中被问到这个问题。它们都是O(nlogn),但大多数人使用快速排序而不是归并排序。为什么呢?


实际上,快速排序是O(n2)。它的平均情况运行时间是O(nlog(n)),但最坏情况是O(n2),这发生在在包含很少唯一项的列表上运行时。随机化花费O(n)。当然,这并没有改变最坏的情况,它只是防止恶意用户使您的排序花费很长时间。

快速排序更受欢迎,因为它:

(MergeSort需要额外的内存,与要排序的元素数量成线性关系)。 有一个小的隐藏常数。


快速排序是在实践中最快的排序算法,但有一些病态的情况,可以使它的表现差到O(n2)。

堆排序保证在O(n*ln(n))中运行,并且只需要有限的额外存储空间。但是有许多真实世界的测试表明堆排序比快速排序平均要慢得多。


快速排序具有更好的平均情况复杂度,但在某些应用中它是错误的选择。快速排序容易受到拒绝服务攻击。如果攻击者可以选择要排序的输入,他可以很容易地构造一个时间复杂度为o(n^2)的最坏情况的集合。

归并排序的平均情况复杂性和最坏情况复杂性是相同的,因此不会遇到相同的问题。归并排序的这一特性也使它成为实时系统的最佳选择——确切地说,因为没有导致它运行得非常非常慢的病理情况。

由于这些原因,我更喜欢归并排序,而不是快速排序。


维基百科上关于快速排序的词条:

Quicksort also competes with mergesort, another recursive sort algorithm but with the benefit of worst-case Θ(nlogn) running time. Mergesort is a stable sort, unlike quicksort and heapsort, and can be easily adapted to operate on linked lists and very large lists stored on slow-to-access media such as disk storage or network attached storage. Although quicksort can be written to operate on linked lists, it will often suffer from poor pivot choices without random access. The main disadvantage of mergesort is that, when operating on arrays, it requires Θ(n) auxiliary space in the best case, whereas the variant of quicksort with in-place partitioning and tail recursion uses only Θ(logn) space. (Note that when operating on linked lists, mergesort only requires a small, constant amount of auxiliary storage.)


维基百科的解释是:

通常,快速排序在实践中比其他Θ(nlogn)算法要快得多,因为它的内部循环可以在大多数架构上有效地实现,并且在大多数现实数据中,可以做出设计选择,使需要二次时间的概率最小化。

快速排序

Mergesort

我认为归并排序(即Ω(n))所需要的存储量也存在快速排序实现所不具备的问题。在最坏的情况下,它们的算法时间是相同的,但归并排序需要更多的存储空间。


虽然它们都在相同的复杂度类中,但这并不意味着它们都具有相同的运行时。快速排序通常比归并排序更快,因为它更容易编写紧凑的实现代码,它所做的操作也更快。这是因为快速排序通常更快,人们使用它而不是归并排序。

然而!我个人经常会使用归并排序或快速排序变体,当快速排序表现不佳时,它们会降级为归并排序。记住。快速排序平均只有O(n log n)最坏情况是O(n²)归并排序总是O(n log n).在实时性能或响应性是必须的情况下,你的输入数据可能来自恶意来源,你不应该使用简单的快速排序。


我想补充的是,到目前为止提到的三种算法(归并排序,快速排序和堆排序)只有归并排序是稳定的。也就是说,对于那些具有相同键的值,顺序不会改变。在某些情况下,这是可取的。

但是,说实话,在实际情况下,大多数人只需要良好的平均性能和快速排序…快速=)

所有排序算法都有其起伏。有关排序算法的概述,请参阅维基百科的文章。


亩! 快速排序并不比归并排序更好,它非常适合于不同类型的应用。

归并排序是值得考虑的,如果速度是本质,糟糕的最差情况性能不能容忍,并且有额外的空间可用

你说他们«他们都是O(nlogn)[…]»。这是错误的。«快速排序使用大约n^2/2比较在最坏的情况下。

然而,根据我的经验,最重要的属性是在使用带有命令式范式的编程语言进行排序时,可以轻松实现顺序访问。

1 Sedgewick,算法


快速排序有O(n2)最差情况运行时和O(nlogn)平均情况运行时。然而,在许多情况下,它优于归并排序,因为许多因素影响算法的运行时,并且,当把它们放在一起时,快速排序胜出。

In particular, the often-quoted runtime of sorting algorithms refers to the number of comparisons or the number of swaps necessary to perform to sort the data. This is indeed a good measure of performance, especially since it’s independent of the underlying hardware design. However, other things – such as locality of reference (i.e. do we read lots of elements which are probably in cache?) – also play an important role on current hardware. Quicksort in particular requires little additional space and exhibits good cache locality, and this makes it faster than merge sort in many cases.

此外,通过使用适当的枢轴选择,几乎完全避免快速排序的最坏情况运行时间O(n2)是非常容易的——比如随机选择它(这是一个很好的策略)。

在实践中,许多现代的快速排序实现(特别是libstdc++的std::sort)实际上是introsort,其理论上的最差情况是O(nlogn),与归并排序相同。它通过限制递归深度,并在超过logn时切换到不同的算法(heapsort)来实现这一点。


快速排序并不比归并排序好。对于O(n²)(很少发生的最坏情况),快速排序可能比归并排序的O(nlogn)慢得多。快速排序的开销更小,所以对于小n和速度较慢的计算机,它会更好。但是今天的计算机是如此之快,以至于合并排序的额外开销可以忽略不计,并且在大多数情况下,非常慢的快速排序的风险远远超过合并排序的微不足道的开销。

此外,归并排序将具有相同键的项按原始顺序保留,这是一个有用的属性。


在c/c++领域,当不使用stl容器时,我倾向于使用快速排序,因为它是构建的 进入运行时,而归并排序没有。

所以我相信,在许多情况下,这只是阻力最小的途径。

此外,对于整个数据集不适合工作集的情况,快速排序的性能可以高得多。


正如其他人所注意到的,快速排序的最坏情况是O(n²),而归并排序和堆排序则停留在O(nlogn)。然而,在平均情况下,这三个都是O(nlogn);所以它们在大多数情况下是可比较的。

平均而言,快速排序更好的地方在于,内循环意味着将多个值与单个值进行比较,而在其他两个循环中,每次比较时两个项都是不同的。换句话说,Quicksort的读取次数是其他两种算法的一半。在现代cpu上,访问时间在很大程度上决定了性能,因此快速排序最终成为一个很好的首选。


正如许多人所注意到的,快速排序的平均情况性能要比归并排序快。但这只适用于假设按需访问任何内存段的时间为常数的情况。

在RAM中,这种假设通常不太坏(由于缓存的存在,这种假设并不总是正确的,但也不太坏)。然而,如果你的数据结构足够大,可以存储在磁盘上,那么快速排序就会因为磁盘平均每秒进行200次随机查找而被扼杀。但是,同样的磁盘在按顺序每秒读取或写入兆字节的数据方面没有任何问题。这正是归并排序所做的。

因此,如果数据必须在磁盘上排序,你真的,真的想使用归并排序的一些变体。(通常你快速排序子列表,然后开始将它们合并到某个大小阈值以上。)

Furthermore if you have to do anything with datasets of that size, think hard about how to avoid seeks to disk. For instance this is why it is standard advice that you drop indexes before doing large data loads in databases, and then rebuild the index later. Maintaining the index during the load means constantly seeking to disk. By contrast if you drop the indexes, then the database can rebuild the index by first sorting the information to be dealt with (using a mergesort of course!) and then loading it into a BTREE datastructure for the index. (BTREEs are naturally kept in order, so you can load one from a sorted dataset with few seeks to disk.)

在许多情况下,了解如何避免磁盘寻道使我将数据处理工作花费数小时而不是数天或数周。


在所有条件相同的情况下,我希望大多数人使用最方便的方法,这往往是qsort(3)。除此之外,快速排序在数组上非常快,就像归并排序是列表的常用选择一样。

我想知道的是为什么基数排序和桶排序这么少见。它们是O(n)至少在链表上是这样的它所需要的只是将键转换为序数的方法。(字符串和浮动工作得很好。)

我认为原因与计算机科学的教学方式有关。我甚至不得不向我的讲师演示算法分析,它确实有可能比O(nlog (n))更快地排序。(他证明了比较排序不能比O(nlog (n))快,这是正确的)

在其他新闻中,浮点数可以按整数排序,但之后必须将负数反转。

编辑: 实际上,这里有一种更糟糕的将浮点数作为整数排序的方法:http://www.stereopsis.com/radix.html。注意,不管你实际使用什么排序算法,比特翻转技巧都可以使用……


但大多数人使用快速排序而不是归并排序。为什么呢?”

一个没有给出的心理学原因是,快速排序的名字更为巧妙。很好的市场营销。

是的,带有三重分区的快速排序可能是最好的通用排序算法之一,但“快速”排序听起来比“归并”排序强大得多,这是无法克服的事实。


That's hard to say.The worst of MergeSort is n(log2n)-n+1,which is accurate if n equals 2^k(I have already proved this).And for any n,it's between (n lg n - n + 1) and (n lg n + n + O(lg n)).But for quickSort,its best is nlog2n(also n equals 2^k).If you divide Mergesort by quickSort,it equals one when n is infinite.So it's as if the worst case of MergeSort is better than the best case of QuickSort,why do we use quicksort?But remember,MergeSort is not in place,it require 2n memeroy space.And MergeSort also need to do many array copies,which we don't include in the analysis of algorithm.In a word,MergeSort is really faseter than quicksort in theroy,but in reality you need to consider memeory space,the cost of array copy,merger is slower than quick sort.I once made an experiment where I was given 1000000 digits in java by Random class,and it took 2610ms by mergesort,1370ms by quicksort.


答案将略微倾向于快速排序w.r.t的变化带来的DualPivotQuickSort的基本值。它在JAVA 7中用于在JAVA .util. arrays中排序

It is proved that for the Dual-Pivot Quicksort the average number of
comparisons is 2*n*ln(n), the average number of swaps is 0.8*n*ln(n),
whereas classical Quicksort algorithm has 2*n*ln(n) and 1*n*ln(n)
respectively. Full mathematical proof see in attached proof.txt
and proof_add.txt files. Theoretical results are also confirmed
by experimental counting of the operations.

您可以在这里找到JAVA7实现- http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/7-b147/java/util/Arrays.java

关于DualPivotQuickSort的进一步精彩阅读- http://permalink.gmane.org/gmane.comp.java.openjdk.core-libs.devel/2628


快速排序是最坏情况O(n²),然而,平均情况始终执行归并排序。每个算法都是O(nlogn),但你需要记住,当谈论大O时,我们忽略了较低的复杂度因素。当涉及到常数因子时,快速排序比归并排序有显著的改进。

归并排序也需要O(2n)内存,而快速排序可以就地完成(只需要O(n))。这是快速排序通常比归并排序更受欢迎的另一个原因。

额外信息:

快速排序的最坏情况发生在枢轴选择不佳时。考虑下面的例子:

[5, 4, 3, 2, 1]

If the pivot is chosen as the smallest or largest number in the group then quick sort will run in O(n^2). The probability of choosing the element that is in the largest or smallest 25% of the list is 0.5. That gives the algorithm a 0.5 chance of being a good pivot. If we employ a typical pivot choosing algorithm (say choosing a random element), we have 0.5 chance of choosing a good pivot for every choice of a pivot. For collections of a large size the probability of always choosing a poor pivot is 0.5 * n. Based on this probability quick sort is efficient for the average (and typical) case.


为什么快速排序很好?

QuickSort takes N^2 in worst case and NlogN average case. The worst case occurs when data is sorted. This can be mitigated by random shuffle before sorting is started. QuickSort doesn't takes extra memory that is taken by merge sort. If the dataset is large and there are identical items, complexity of Quicksort reduces by using 3 way partition. More the no of identical items better the sort. If all items are identical, it sorts in linear time. [This is default implementation in most libraries]

快速排序总是比归并排序好吗?

不是真的。

归并排序是稳定的,但快速排序不是。所以如果你需要输出的稳定性,你可以使用归并排序。在许多实际应用中需要稳定性。 现在内存很便宜。因此,如果Mergesort使用的额外内存对您的应用程序不是至关重要的,那么使用Mergesort也没有什么害处。

注意:在java中,Arrays.sort()函数对基本数据类型使用快速排序,对对象数据类型使用归并排序。因为对象消耗内存开销,所以为归并排序增加一点开销对于性能来说可能不是什么问题。

参考:在Coursera上观看普林斯顿算法课程第三周的快速排序视频


快速排序和合并排序的小增加。

它还可以依赖于排序项的类型。如果访问项、交换和比较不是简单的操作,就像比较平面内存中的整数一样,那么归并排序可能是更可取的算法。

例如,我们在远程服务器上使用网络协议对项目进行排序。

而且,在像“链表”这样的自定义容器中,也没有快速排序的好处。 1. 对链表进行归并排序,不需要额外的内存。 2. 快速排序中对元素的访问不是顺序的(在内存中)


我想在现有的优秀答案中添加一些关于快速排序在偏离最佳情况时的表现以及这种情况的可能性的数学,我希望这将帮助人们更好地理解为什么O(n²)情况在更复杂的快速排序实现中不是真正的问题。

除了随机访问问题之外,还有两个主要因素会影响快速排序的性能,它们都与主元与正在排序的数据的比较有关。

1) A small number of keys in the data. A dataset of all the same value will sort in n^2 time on a vanilla 2-partition QuickSort because all of the values except the pivot location are placed on one side each time. Modern implementations address this by methods such as using a 3-partition sort. These methods execute on a dataset of all the same value in O(n) time. So using such an implementation means that an input with a small number of keys actually improves performance time and is no longer a concern.

2)极差的枢轴选择会导致最坏情况的性能。在理想的情况下,主元总是这样,50%的数据是小的,50%的数据是大的,这样在每次迭代中输入将被分成两半。这给了我们n次比较和交换,乘以log-2(n)次递归,时间为O(n*logn)。

非理想的枢轴选择对执行时间的影响有多大?

让我们考虑这样一种情况,其中始终选择主元,这样75%的数据都在主元的一边。它仍然是O(n*logn)但现在对数的底变成了1/0.75或1.33。改变基数时性能的关系始终是一个常数,用log(2)/log(newBase)表示。在这个例子中,这个常数是2.4。所以这种枢轴选择的时间是理想情况的2.4倍。

情况多快会恶化?

不是很快,直到主元选择(始终)非常糟糕:

一侧50%:(理想情况下) 75%在一边:2.4倍长 90%在一边:6.6倍长 95%在一边:13.5倍长 一边99%长69倍

当我们在一边接近100%时,执行的log部分接近n,整个执行渐近接近O(n²)。

In a naive implementation of QuickSort, cases such as a sorted array (for 1st element pivot) or a reverse-sorted array (for last element pivot) will reliably produce a worst-case O(n^2) execution time. Additionally, implementations with a predictable pivot selection can be subjected to DoS attack by data that is designed to produce worst case execution. Modern implementations avoid this by a variety of methods, such as randomizing the data before sort, choosing the median of 3 randomly chosen indexes, etc. With this randomization in the mix, we have 2 cases:

小数据集。最坏的情况是可能的但O(n²)不是灾难性的因为n足够小,所以n²也很小。 大数据集。最坏的情况在理论上是可能的,但在实践中并非如此。

我们看到糟糕表现的可能性有多大?

这种可能性微乎其微。让我们考虑5000个值:

我们假设的实现将使用3个随机选择的索引的中位数来选择一个主元。我们认为在25%-75%范围内的枢轴是“好的”,而在0%-25%或75%-100%范围内的枢轴是“坏的”。如果你使用3个随机索引的中位数来观察概率分布,每次递归都有11/16的机会最终得到一个好的主元。让我们做两个保守的(错误的)假设来简化数学:

好的枢轴总是精确地在25%/75%的分割和2.4*理想情况下运行。我们从来没有得到过理想的分割或者比25/75更好的分割。 糟糕的枢轴总是最坏的情况,基本上对解决方案没有任何贡献。

Our QuickSort implementation will stop at n=10 and switch to an insertion sort, so we require 22 25%/75% pivot partitions to break the 5,000 value input down that far. (10*1.333333^22 > 5000) Or, we require 4990 worst case pivots. Keep in mind that if we accumulate 22 good pivots at any point then the sort will complete, so worst case or anything near it requires extremely bad luck. If it took us 88 recursions to actually achieve the 22 good pivots required to sort down to n=10, that would be 4*2.4*ideal case or about 10 times the execution time of the ideal case. How likely is it that we would not achieve the required 22 good pivots after 88 recursions?

二项概率分布可以回答这个问题,答案是10^-18。(n是88,k是21,p是0.6875)你的用户在点击[排序]的1秒内被闪电击中的可能性大约是他们看到5000个项目排序比10*理想情况更糟糕的1000倍。随着数据集变大,这种可能性会越来越小。以下是一些数组大小以及它们运行时间超过10*理想值的相应机会:

640项数组:10^-13(需要在60次尝试中获得15个良好的枢轴点) 5000项数组:10^-18(需要在88次尝试中有22个良好的枢轴) 40000项的数组:10^-23(需要在116个中有29个好的枢轴)

记住,这是有两个保守的假设,比现实更糟糕。因此,实际性能更好,剩余概率的平衡更接近理想。

最后,正如其他人所提到的,如果递归堆栈太深,即使这些荒谬的不太可能的情况也可以通过切换到堆排序来消除。所以TLDR是,对于快速排序的良好实现,最坏的情况并不存在,因为它已经被设计出来,并且执行在O(n*logn)时间内完成。


在归并排序中,一般算法为:

对左子数组进行排序 对右子数组进行排序 合并两个已排序的子数组

在顶层,合并两个已排序的子数组涉及处理N个元素。

再往下一层,第3步的每次迭代都涉及处理N/2个元素,但您必须重复此过程两次。所以你仍然在处理2 * N/2 == N个元素。

再往下一层,你要合并4 * N/4 == N个元素,以此类推。递归堆栈中的每个深度都涉及合并相同数量的元素,涉及对该深度的所有调用。

考虑一下快速排序算法:

选择一个枢轴点 将枢轴点放置在数组中的正确位置,所有较小的元素放在左边,较大的元素放在右边 对左子数组进行排序 对右子数组排序

在顶层,你处理的是一个大小为n的数组,然后选择一个枢轴点,把它放在正确的位置,然后可以在算法的其余部分完全忽略它。

再往下一层,您将处理2个子数组,它们的组合大小为N-1(即减去之前的枢轴点)。为每个子数组选择一个枢轴点,总共有2个额外的枢轴点。

再往下一层,您将处理4个子数组,它们的组合大小为N-3,原因与上面相同。

然后N-7…然后c15…然后N-32…

递归堆栈的深度保持大致相同(logN)。使用归并排序,你总是在递归堆栈的每一层处理n个元素的归并。但是使用快速排序,你要处理的元素数量会随着你在堆栈中向下移动而减少。例如,如果你在递归堆栈中查看深度,你正在处理的元素数量是N - 2^((logN)/2)) == N -根号(N)。

声明:对于归并排序,因为每次都将数组分割为两个完全相等的块,所以递归深度正好是logN。在快速排序时,由于枢轴点不太可能恰好位于数组的中间,因此递归堆栈的深度可能略大于logN。我还没有做过数学计算,看看这个因素和上面描述的因素在算法复杂性中究竟扮演了多大的角色。


快速排序是一种就地排序算法,因此它更适合于数组。另一方面,归并排序需要额外的O(N)存储空间,更适合于链表。

与数组不同,在喜欢列表中,我们可以在中间插入O(1)空间和O(1)时间的项,因此归并排序中的归并操作可以在不需要任何额外空间的情况下实现。但是,为数组分配和取消分配额外空间会对归并排序的运行时间产生不利影响。归并排序也有利于链表,因为数据是按顺序访问的,没有太多的随机内存访问。

另一方面,快速排序需要大量的随机内存访问,而使用数组,我们可以直接访问内存,而不需要像链表那样进行任何遍历。同样,快速排序用于数组时具有良好的引用局部性,因为数组连续存储在内存中。

尽管这两种排序算法的平均复杂度都是O(NlogN),但通常人们在执行普通任务时使用数组进行存储,因此快速排序应该是首选算法。

编辑:我刚刚发现归并排序最差/最好/平均情况总是nlogn,但快速排序可以从n2(最坏的情况下,元素已经排序)到nlogn(平均/最佳情况下,pivot总是将数组分为两半)。


这是一个相当老的问题,但因为我最近处理了这两个问题,所以这里是我的2c:

归并排序平均需要~ N log N次比较。对于已经(几乎)排序过的排序数组,这可以达到1/ 2nlog N,因为在归并时,我们(几乎)总是选择“左边”的1/ 2n次,然后只复制右边1/ 2n个元素。此外,我可以推测,已经排序的输入使处理器的分支预测器发光,但猜测几乎所有的分支都正确,从而防止管道停顿。

快速排序平均需要~ 1.38 nlog N个比较。在比较方面,它不会从已经排序的数组中获得很大的好处(但是在交换方面,可能在CPU内部的分支预测方面,它会获得很大的好处)。

我在相当现代的处理器上的基准测试显示如下:

当比较函数是回调函数时(如qsort() libc实现),对于随机输入,快速排序比归并排序慢15%,对于已经排序的64位整数,快排序比归并排序慢30%。

另一方面,如果比较不是回调,我的经验是快速排序优于归并排序高达25%。

然而,如果你的(大)数组只有很少的唯一值,归并排序在任何情况下都开始超过快速排序。

因此,底线可能是:如果比较是昂贵的(例如,回调函数,比较字符串,比较结构的许多部分,主要是得到第二个,第三个,第四个“if”来产生差异)-很可能你会更好地使用归并排序。对于简单的任务,快速排序会更快。

之前所说的都是真的: -快速排序可以是N^2,但Sedgewick声称,一个好的随机实现有更多的机会,计算机执行排序被闪电击中比N^2 —归并排序需要占用额外空间


与归并排序不同,快速排序不使用辅助空间。而归并排序使用辅助空间O(n)。 归并排序的最坏情况时间复杂度是O(nlogn)而快速排序的最坏情况复杂度是O(n²)这发生在数组已经排序的时候。


当我试验这两种排序算法时,通过计算递归调用的次数, 快速排序始终比归并排序具有更少的递归调用。 这是因为快速排序有枢轴,而在下一个递归调用中不包括枢轴。这样快速排序可以比归并排序更快地达到递归基本情况。


One of the reason is more philosophical. Quicksort is Top->Down philosophy. With n elements to sort, there are n! possibilities. With 2 partitions of m & n-m which are mutually exclusive, the number of possibilities go down in several orders of magnitude. m! * (n-m)! is smaller by several orders than n! alone. imagine 5! vs 3! *2!. 5! has 10 times more possibilities than 2 partitions of 2 & 3 each . and extrapolate to 1 million factorial vs 900K!*100K! vs. So instead of worrying about establishing any order within a range or a partition,just establish order at a broader level in partitions and reduce the possibilities within a partition. Any order established earlier within a range will be disturbed later if the partitions themselves are not mutually exclusive.

任何自下而上的排序方法,如归并排序或堆排序,就像工人或雇员的方法一样,人们很早就开始在微观层面进行比较。但是,一旦在它们之间发现了一个元素,这个顺序就必然会丢失。这些方法非常稳定和可预测,但要做一定量的额外工作。

Quick Sort is like Managerial approach where one is not initially concerned about any order , only about meeting a broad criterion with No regard for order. Then the partitions are narrowed until you get a sorted set. The real challenge in Quicksort is in finding a partition or criterion in the dark when you know nothing about the elements to sort. That is why we either need to spend some effort to find a median value or pick 1 at random or some arbitrary "Managerial" approach . To find a perfect median can take significant amount of effort and leads to a stupid bottom up approach again. So Quicksort says just a pick a random pivot and hope that it will be somewhere in the middle or do some work to find median of 3 , 5 or something more to find a better median but do not plan to be perfect & don't waste any time in initially ordering. That seems to do well if you are lucky or sometimes degrades to n^2 when you don't get a median but just take a chance. Any way data is random. right. So I agree more with the top ->down logical approach of quicksort & it turns out that the chance it takes about pivot selection & comparisons that it saves earlier seems to work better more times than any meticulous & thorough stable bottom ->up approach like merge sort. But


同时考虑时间和空间的复杂性。 归并排序: 时间复杂度:O(nlogn), 空间复杂度:O(nlogn)

快速排序: 时间复杂度:O(n²), 空间复杂度:O(n)

现在,他们各自在一个场景中获胜。 但是,使用随机枢轴,您几乎总是可以将快速排序的时间复杂度降低到O(nlogn)。

因此,在许多应用中,快速排序是首选,而不是归并排序。


这是采访中经常被问到的一个问题,尽管归并排序在最坏情况下性能更好,但快速排序被认为比归并排序更好,特别是对于大输入。以下是快速排序更好的原因:

1-辅助空间:快速排序是一种就地排序算法。就地排序意味着执行排序不需要额外的存储空间。另一方面,归并排序需要一个临时数组来归并已排序的数组,因此它并不到位。

2-最坏情况:快速排序O(n^2)的最坏情况可以通过使用随机化快速排序来避免。通过选择正确的枢轴,可以很容易地避免这种情况。通过选择合适的枢轴元来获得平均情况下的行为,从而提高了算法的性能,达到了与归并排序一样的效率。

3-引用的局部性:快速排序特别展示了良好的缓存局部性,这使得它在许多情况下比归并排序更快,比如在虚拟内存环境中。

4-尾递归:快速排序是尾递归,而归并排序不是。尾递归函数是一种函数,其中递归调用是函数执行的最后一件事。尾递归函数被认为比非尾递归函数更好,因为尾递归可以被编译器优化。