我在一次面试中被问到这个问题。它们都是O(nlogn),但大多数人使用快速排序而不是归并排序。为什么呢?
当前回答
我想补充的是,到目前为止提到的三种算法(归并排序,快速排序和堆排序)只有归并排序是稳定的。也就是说,对于那些具有相同键的值,顺序不会改变。在某些情况下,这是可取的。
但是,说实话,在实际情况下,大多数人只需要良好的平均性能和快速排序…快速=)
所有排序算法都有其起伏。有关排序算法的概述,请参阅维基百科的文章。
其他回答
实际上,快速排序是O(n2)。它的平均情况运行时间是O(nlog(n)),但最坏情况是O(n2),这发生在在包含很少唯一项的列表上运行时。随机化花费O(n)。当然,这并没有改变最坏的情况,它只是防止恶意用户使您的排序花费很长时间。
快速排序更受欢迎,因为它:
(MergeSort需要额外的内存,与要排序的元素数量成线性关系)。 有一个小的隐藏常数。
同时考虑时间和空间的复杂性。 归并排序: 时间复杂度:O(nlogn), 空间复杂度:O(nlogn)
快速排序: 时间复杂度:O(n²), 空间复杂度:O(n)
现在,他们各自在一个场景中获胜。 但是,使用随机枢轴,您几乎总是可以将快速排序的时间复杂度降低到O(nlogn)。
因此,在许多应用中,快速排序是首选,而不是归并排序。
快速排序是最坏情况O(n²),然而,平均情况始终执行归并排序。每个算法都是O(nlogn),但你需要记住,当谈论大O时,我们忽略了较低的复杂度因素。当涉及到常数因子时,快速排序比归并排序有显著的改进。
归并排序也需要O(2n)内存,而快速排序可以就地完成(只需要O(n))。这是快速排序通常比归并排序更受欢迎的另一个原因。
额外信息:
快速排序的最坏情况发生在枢轴选择不佳时。考虑下面的例子:
[5, 4, 3, 2, 1]
If the pivot is chosen as the smallest or largest number in the group then quick sort will run in O(n^2). The probability of choosing the element that is in the largest or smallest 25% of the list is 0.5. That gives the algorithm a 0.5 chance of being a good pivot. If we employ a typical pivot choosing algorithm (say choosing a random element), we have 0.5 chance of choosing a good pivot for every choice of a pivot. For collections of a large size the probability of always choosing a poor pivot is 0.5 * n. Based on this probability quick sort is efficient for the average (and typical) case.
这是一个相当老的问题,但因为我最近处理了这两个问题,所以这里是我的2c:
归并排序平均需要~ N log N次比较。对于已经(几乎)排序过的排序数组,这可以达到1/ 2nlog N,因为在归并时,我们(几乎)总是选择“左边”的1/ 2n次,然后只复制右边1/ 2n个元素。此外,我可以推测,已经排序的输入使处理器的分支预测器发光,但猜测几乎所有的分支都正确,从而防止管道停顿。
快速排序平均需要~ 1.38 nlog N个比较。在比较方面,它不会从已经排序的数组中获得很大的好处(但是在交换方面,可能在CPU内部的分支预测方面,它会获得很大的好处)。
我在相当现代的处理器上的基准测试显示如下:
当比较函数是回调函数时(如qsort() libc实现),对于随机输入,快速排序比归并排序慢15%,对于已经排序的64位整数,快排序比归并排序慢30%。
另一方面,如果比较不是回调,我的经验是快速排序优于归并排序高达25%。
然而,如果你的(大)数组只有很少的唯一值,归并排序在任何情况下都开始超过快速排序。
因此,底线可能是:如果比较是昂贵的(例如,回调函数,比较字符串,比较结构的许多部分,主要是得到第二个,第三个,第四个“if”来产生差异)-很可能你会更好地使用归并排序。对于简单的任务,快速排序会更快。
之前所说的都是真的: -快速排序可以是N^2,但Sedgewick声称,一个好的随机实现有更多的机会,计算机执行排序被闪电击中比N^2 —归并排序需要占用额外空间
虽然它们都在相同的复杂度类中,但这并不意味着它们都具有相同的运行时。快速排序通常比归并排序更快,因为它更容易编写紧凑的实现代码,它所做的操作也更快。这是因为快速排序通常更快,人们使用它而不是归并排序。
然而!我个人经常会使用归并排序或快速排序变体,当快速排序表现不佳时,它们会降级为归并排序。记住。快速排序平均只有O(n log n)最坏情况是O(n²)归并排序总是O(n log n).在实时性能或响应性是必须的情况下,你的输入数据可能来自恶意来源,你不应该使用简单的快速排序。