我在一次面试中被问到这个问题。它们都是O(nlogn),但大多数人使用快速排序而不是归并排序。为什么呢?


当前回答

在c/c++领域,当不使用stl容器时,我倾向于使用快速排序,因为它是构建的 进入运行时,而归并排序没有。

所以我相信,在许多情况下,这只是阻力最小的途径。

此外,对于整个数据集不适合工作集的情况,快速排序的性能可以高得多。

其他回答

实际上,快速排序是O(n2)。它的平均情况运行时间是O(nlog(n)),但最坏情况是O(n2),这发生在在包含很少唯一项的列表上运行时。随机化花费O(n)。当然,这并没有改变最坏的情况,它只是防止恶意用户使您的排序花费很长时间。

快速排序更受欢迎,因为它:

(MergeSort需要额外的内存,与要排序的元素数量成线性关系)。 有一个小的隐藏常数。

同时考虑时间和空间的复杂性。 归并排序: 时间复杂度:O(nlogn), 空间复杂度:O(nlogn)

快速排序: 时间复杂度:O(n²), 空间复杂度:O(n)

现在,他们各自在一个场景中获胜。 但是,使用随机枢轴,您几乎总是可以将快速排序的时间复杂度降低到O(nlogn)。

因此,在许多应用中,快速排序是首选,而不是归并排序。

在c/c++领域,当不使用stl容器时,我倾向于使用快速排序,因为它是构建的 进入运行时,而归并排序没有。

所以我相信,在许多情况下,这只是阻力最小的途径。

此外,对于整个数据集不适合工作集的情况,快速排序的性能可以高得多。

快速排序是最坏情况O(n²),然而,平均情况始终执行归并排序。每个算法都是O(nlogn),但你需要记住,当谈论大O时,我们忽略了较低的复杂度因素。当涉及到常数因子时,快速排序比归并排序有显著的改进。

归并排序也需要O(2n)内存,而快速排序可以就地完成(只需要O(n))。这是快速排序通常比归并排序更受欢迎的另一个原因。

额外信息:

快速排序的最坏情况发生在枢轴选择不佳时。考虑下面的例子:

[5, 4, 3, 2, 1]

If the pivot is chosen as the smallest or largest number in the group then quick sort will run in O(n^2). The probability of choosing the element that is in the largest or smallest 25% of the list is 0.5. That gives the algorithm a 0.5 chance of being a good pivot. If we employ a typical pivot choosing algorithm (say choosing a random element), we have 0.5 chance of choosing a good pivot for every choice of a pivot. For collections of a large size the probability of always choosing a poor pivot is 0.5 * n. Based on this probability quick sort is efficient for the average (and typical) case.

维基百科上关于快速排序的词条:

Quicksort also competes with mergesort, another recursive sort algorithm but with the benefit of worst-case Θ(nlogn) running time. Mergesort is a stable sort, unlike quicksort and heapsort, and can be easily adapted to operate on linked lists and very large lists stored on slow-to-access media such as disk storage or network attached storage. Although quicksort can be written to operate on linked lists, it will often suffer from poor pivot choices without random access. The main disadvantage of mergesort is that, when operating on arrays, it requires Θ(n) auxiliary space in the best case, whereas the variant of quicksort with in-place partitioning and tail recursion uses only Θ(logn) space. (Note that when operating on linked lists, mergesort only requires a small, constant amount of auxiliary storage.)