我在一次面试中被问到这个问题。它们都是O(nlogn),但大多数人使用快速排序而不是归并排序。为什么呢?


当前回答

这是一个相当老的问题,但因为我最近处理了这两个问题,所以这里是我的2c:

归并排序平均需要~ N log N次比较。对于已经(几乎)排序过的排序数组,这可以达到1/ 2nlog N,因为在归并时,我们(几乎)总是选择“左边”的1/ 2n次,然后只复制右边1/ 2n个元素。此外,我可以推测,已经排序的输入使处理器的分支预测器发光,但猜测几乎所有的分支都正确,从而防止管道停顿。

快速排序平均需要~ 1.38 nlog N个比较。在比较方面,它不会从已经排序的数组中获得很大的好处(但是在交换方面,可能在CPU内部的分支预测方面,它会获得很大的好处)。

我在相当现代的处理器上的基准测试显示如下:

当比较函数是回调函数时(如qsort() libc实现),对于随机输入,快速排序比归并排序慢15%,对于已经排序的64位整数,快排序比归并排序慢30%。

另一方面,如果比较不是回调,我的经验是快速排序优于归并排序高达25%。

然而,如果你的(大)数组只有很少的唯一值,归并排序在任何情况下都开始超过快速排序。

因此,底线可能是:如果比较是昂贵的(例如,回调函数,比较字符串,比较结构的许多部分,主要是得到第二个,第三个,第四个“if”来产生差异)-很可能你会更好地使用归并排序。对于简单的任务,快速排序会更快。

之前所说的都是真的: -快速排序可以是N^2,但Sedgewick声称,一个好的随机实现有更多的机会,计算机执行排序被闪电击中比N^2 —归并排序需要占用额外空间

其他回答

我想补充的是,到目前为止提到的三种算法(归并排序,快速排序和堆排序)只有归并排序是稳定的。也就是说,对于那些具有相同键的值,顺序不会改变。在某些情况下,这是可取的。

但是,说实话,在实际情况下,大多数人只需要良好的平均性能和快速排序…快速=)

所有排序算法都有其起伏。有关排序算法的概述,请参阅维基百科的文章。

快速排序是在实践中最快的排序算法,但有一些病态的情况,可以使它的表现差到O(n2)。

堆排序保证在O(n*ln(n))中运行,并且只需要有限的额外存储空间。但是有许多真实世界的测试表明堆排序比快速排序平均要慢得多。

快速排序和合并排序的小增加。

它还可以依赖于排序项的类型。如果访问项、交换和比较不是简单的操作,就像比较平面内存中的整数一样,那么归并排序可能是更可取的算法。

例如,我们在远程服务器上使用网络协议对项目进行排序。

而且,在像“链表”这样的自定义容器中,也没有快速排序的好处。 1. 对链表进行归并排序,不需要额外的内存。 2. 快速排序中对元素的访问不是顺序的(在内存中)

亩! 快速排序并不比归并排序更好,它非常适合于不同类型的应用。

归并排序是值得考虑的,如果速度是本质,糟糕的最差情况性能不能容忍,并且有额外的空间可用

你说他们«他们都是O(nlogn)[…]»。这是错误的。«快速排序使用大约n^2/2比较在最坏的情况下。

然而,根据我的经验,最重要的属性是在使用带有命令式范式的编程语言进行排序时,可以轻松实现顺序访问。

1 Sedgewick,算法

为什么快速排序很好?

QuickSort takes N^2 in worst case and NlogN average case. The worst case occurs when data is sorted. This can be mitigated by random shuffle before sorting is started. QuickSort doesn't takes extra memory that is taken by merge sort. If the dataset is large and there are identical items, complexity of Quicksort reduces by using 3 way partition. More the no of identical items better the sort. If all items are identical, it sorts in linear time. [This is default implementation in most libraries]

快速排序总是比归并排序好吗?

不是真的。

归并排序是稳定的,但快速排序不是。所以如果你需要输出的稳定性,你可以使用归并排序。在许多实际应用中需要稳定性。 现在内存很便宜。因此,如果Mergesort使用的额外内存对您的应用程序不是至关重要的,那么使用Mergesort也没有什么害处。

注意:在java中,Arrays.sort()函数对基本数据类型使用快速排序,对对象数据类型使用归并排序。因为对象消耗内存开销,所以为归并排序增加一点开销对于性能来说可能不是什么问题。

参考:在Coursera上观看普林斯顿算法课程第三周的快速排序视频