我在一次面试中被问到这个问题。它们都是O(nlogn),但大多数人使用快速排序而不是归并排序。为什么呢?
当前回答
但大多数人使用快速排序而不是归并排序。为什么呢?”
一个没有给出的心理学原因是,快速排序的名字更为巧妙。很好的市场营销。
是的,带有三重分区的快速排序可能是最好的通用排序算法之一,但“快速”排序听起来比“归并”排序强大得多,这是无法克服的事实。
其他回答
快速排序并不比归并排序好。对于O(n²)(很少发生的最坏情况),快速排序可能比归并排序的O(nlogn)慢得多。快速排序的开销更小,所以对于小n和速度较慢的计算机,它会更好。但是今天的计算机是如此之快,以至于合并排序的额外开销可以忽略不计,并且在大多数情况下,非常慢的快速排序的风险远远超过合并排序的微不足道的开销。
此外,归并排序将具有相同键的项按原始顺序保留,这是一个有用的属性。
快速排序具有更好的平均情况复杂度,但在某些应用中它是错误的选择。快速排序容易受到拒绝服务攻击。如果攻击者可以选择要排序的输入,他可以很容易地构造一个时间复杂度为o(n^2)的最坏情况的集合。
归并排序的平均情况复杂性和最坏情况复杂性是相同的,因此不会遇到相同的问题。归并排序的这一特性也使它成为实时系统的最佳选择——确切地说,因为没有导致它运行得非常非常慢的病理情况。
由于这些原因,我更喜欢归并排序,而不是快速排序。
这是采访中经常被问到的一个问题,尽管归并排序在最坏情况下性能更好,但快速排序被认为比归并排序更好,特别是对于大输入。以下是快速排序更好的原因:
1-辅助空间:快速排序是一种就地排序算法。就地排序意味着执行排序不需要额外的存储空间。另一方面,归并排序需要一个临时数组来归并已排序的数组,因此它并不到位。
2-最坏情况:快速排序O(n^2)的最坏情况可以通过使用随机化快速排序来避免。通过选择正确的枢轴,可以很容易地避免这种情况。通过选择合适的枢轴元来获得平均情况下的行为,从而提高了算法的性能,达到了与归并排序一样的效率。
3-引用的局部性:快速排序特别展示了良好的缓存局部性,这使得它在许多情况下比归并排序更快,比如在虚拟内存环境中。
4-尾递归:快速排序是尾递归,而归并排序不是。尾递归函数是一种函数,其中递归调用是函数执行的最后一件事。尾递归函数被认为比非尾递归函数更好,因为尾递归可以被编译器优化。
与归并排序不同,快速排序不使用辅助空间。而归并排序使用辅助空间O(n)。 归并排序的最坏情况时间复杂度是O(nlogn)而快速排序的最坏情况复杂度是O(n²)这发生在数组已经排序的时候。
在归并排序中,一般算法为:
对左子数组进行排序 对右子数组进行排序 合并两个已排序的子数组
在顶层,合并两个已排序的子数组涉及处理N个元素。
再往下一层,第3步的每次迭代都涉及处理N/2个元素,但您必须重复此过程两次。所以你仍然在处理2 * N/2 == N个元素。
再往下一层,你要合并4 * N/4 == N个元素,以此类推。递归堆栈中的每个深度都涉及合并相同数量的元素,涉及对该深度的所有调用。
考虑一下快速排序算法:
选择一个枢轴点 将枢轴点放置在数组中的正确位置,所有较小的元素放在左边,较大的元素放在右边 对左子数组进行排序 对右子数组排序
在顶层,你处理的是一个大小为n的数组,然后选择一个枢轴点,把它放在正确的位置,然后可以在算法的其余部分完全忽略它。
再往下一层,您将处理2个子数组,它们的组合大小为N-1(即减去之前的枢轴点)。为每个子数组选择一个枢轴点,总共有2个额外的枢轴点。
再往下一层,您将处理4个子数组,它们的组合大小为N-3,原因与上面相同。
然后N-7…然后c15…然后N-32…
递归堆栈的深度保持大致相同(logN)。使用归并排序,你总是在递归堆栈的每一层处理n个元素的归并。但是使用快速排序,你要处理的元素数量会随着你在堆栈中向下移动而减少。例如,如果你在递归堆栈中查看深度,你正在处理的元素数量是N - 2^((logN)/2)) == N -根号(N)。
声明:对于归并排序,因为每次都将数组分割为两个完全相等的块,所以递归深度正好是logN。在快速排序时,由于枢轴点不太可能恰好位于数组的中间,因此递归堆栈的深度可能略大于logN。我还没有做过数学计算,看看这个因素和上面描述的因素在算法复杂性中究竟扮演了多大的角色。